[en] We analyze EUV spatially-resolved dayglow spectra obtained at 0.37 nm resolution by the UVIS instrument during the Cassini flyby of Venus on 24 June 1999, a period of high solar activity level. Emissions from OI, OII, NI, CI and CII and CO have been identified and their disc average intensity has been determined. They are generally somewhat brighter than those determined from the observations made with the HUT spectrograph at a lower activity level, We present the brightness distribution along the foot track of the UVIS slit of the OII 83.4 nm, OI 98.9 nm, Lyman-ß + OI 102.5 nm and NI 120.0 nm multiplets, and the CO C-X and B-X Hopfield-Birge bands. We make a detailed comparison of the intensities of the 834 nm, 989 nm, 120.0 nm multiplets and CO B-X band measured along the slit foot track on the disc with those predicted by an airglow model previously used to analyze Venus and Mars ultraviolet spectra. This model includes the treatment of multiple scattering for the optically thick OI, OII and NI multiplets. It is found that the observed intensity of the OII emission at 83.4 nm is higher than predicted by the model. An increase of the O[SUP]+[/SUP] ion density relative to the densities usually measured by Pioneer Venus brings the observations and the modeled values into better agreement. The calculated intensity variation of the CO B-X emission along the track of the UVIS slit is in fair agreement with the observations. The intensity of the OI 98.9 nm emission is well predicted by the model if resonance scattering of solar radiation by O atoms is included as a source. The calculated brightness of the NI 120 nm multiplet is larger than observed by a factor of ˜2-3 if photons from all sources encounter multiple scattering. The discrepancy reduces to 30-80% if the photon electron impact and photodissociation of N[SUB]2[/SUB] sources of N([SUP]4[/SUP]S) atoms are considered as optically thin. Overall, we find that the O, N[SUB]2[/SUB] and CO densities from the empirical VTS3 model provide satisfactory agreement between the calculated and the observed EUV airglow emissions.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Gérard, Jean-Claude ; Institut d'Astrophysique et Géophysique, Université de Liège, B5c 17, allée du 6 août, B-4000 Liège, Belgium
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gustin, Jacques ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Shematovich, V. I.; Institute of Astronomy of the Russian Academy of Sciences, 48 Pyatnitskaya St. 119017, Moscow, Russia
Bisikalo, D.; Institute of Astronomy of the Russian Academy of Sciences, 48 Pyatnitskaya St. 119017, Moscow, Russia
Gladstone, G. R.; Southwest Research Institute, 6220 Culebra Road, P.O. Drawer 28510, San Antonio, Texas 78228-0510, USA
Esposito, L. W.; LASP, University of Colorado, 392 UCB Boulder, Colorado 80309-0392, USA
Language :
English
Title :
EUV spectroscopy of the Venus dayglow with UVIS on Cassini
Publication date :
01 January 2011
Journal title :
Icarus
ISSN :
0019-1035
eISSN :
1090-2643
Publisher :
Academic Press, San Diego, United States - California
Ajello J.M., et al. The Cassini Campaign observations of the Jupiter aurora by the Ultraviolet Imaging Spectrograph and the Space Telescope Imaging Spectrograph. Icarus 2005, 178:327-345. 10.1016/j.icarus.2005.01.023.
Bertaux J.L., Blamont J.E., Lepine V.M., Kurt V.G., Romanova N.N., Smirnov A.S. Venera 11 and Venera 12 observations of E.U.V. emissions from the upper atmosphere of Venus. Planet. Space Sci. 1981, 29:149-166.
Bishop J., Feldman P.D. Analysis of the Astro-1/Hopkins Ultraviolet Telescope EUV-FUV dayside nadir spectral radiance measurements. J. Geophys. Res. 2003, 108:1243. 10.1029/2001JA000330.
Bishop J., Stevens M.H., Feldman P.D. Molecular nitrogen Carroll-Yoshino v' = 0 emission in the thermospheric dayglow as seen by the Far Ultraviolet Spectroscopic Explorer. J. Geophys. Res. 2007, 112:A10312. 10.1029/2007JA012389.
Brace L.H., Kliore A.J. The structure of the Venus ionosphere. Space Sci. Rev. 1991, 55:81-163.
Broadfoot A.L., Kumar S., Belton M.J.S., McElroy M.B. Ultraviolet observations of Venus from Mariner 10: Preliminary result. Science 1974, 183:1315-1318.
Curdt W., Brekke P., Feldman U., Wilhelm K., Dwivedi B.N., Schühle U., Lemaire P. The SUMER spectral atlas of solar-disk features. Astron. Astrophys. 2001, 375:591-613. 10.1051/0004-6361:20010364.
Doering J.P., Goembel L. Absolute differential and integral excitation cross sections for atomic nitrogen, 1. The 4S0→3s 4P (1200Å) transition from 30 to 100eV. J. Geophys. Res. 1991, 96:16021-16024.
Doering J.P., Goembel L. Absolute differential and integral electron excitation cross sections for atomic nitrogen, 2. The 4S0→2p4 4P (Lambda 1134Å) transition from 30 to 100eV. J. Geophys. Res. 1992, 97:4295-4298.
Esposito L.W., Colwell J.E., McClintock W.E. Cassini UVIS observations of Saturn rings. Planet. Space Sci. 1998, 46:1221-1235. 10.1016/S0032-0633(98)00076-2.
Esposito L.W., et al. The Cassini Ultraviolet Imaging Spectrograph investigation. Space Sci. Rev. 2004, 115:299-361. 10.1007/s11214-004-1455-8.
Federman S.R., Fritts M., Cheng S., Menningen K.M., Knauth D.C., Fulk K. Oscillator strengths for B-X, C-X, and E-X transitions in carbon monoxide. Astrophys. J. Suppl. 2001, 134:133-138.
Feldman P.D., Burgh E.B., Durrance S.T., Davidsen A.F. Far-ultraviolet spectroscopy of Venus and Mars at 4Å resolution with the Hopkins Ultraviolet Telescope on ASTRO-2. Astrophys. J. 2000, 538:395-400. 10.1086/309125.
Fox J., Bougher S.W. Structure, luminosity, and dynamics of the Venus thermosphere. Space Sci. Rev. 1991, 55:357-489.
Fox J., Sung K. Solar activity variations of the Venus thermosphere/ionosphere. J. Geophys. Res. 2001, 106(A10):21305-21335.
Gentieu E.P., Feldman P.D., Meier R.R. Spectroscopy of the extreme ultraviolet dayglow at 6.5Å resolution: Atomic and ionic emissions between 530 and 1240Å. Geophys. Res. Lett. 1979, 6:325-328.
Gérard J.-C., Hubert B., Shematovich V.I., Bisikalo D.V., Gladstone G.R. The Venus ultraviolet oxygen dayglow and aurora: Model comparison with observations. Planet. Space Sci. 2008, 56:542-552. 10.1016/j.pss.2007.11.008.
Gladstone G.R. Radiative transfer of resonance lines with internal sources. J. Quant. Spectrosc. Radiat. Trans. 1985, 33:453-458.
Gladstone G.R. Solar OI 1304Å triplet line profiles. J. Geophys. Res. 1992, 97:19125-19519.
Gladstone G.R., Link R., Chakrabarti S., McConnell J.C. Modeling of the O I 989-Å to 1173-Å ratio in the terrestrial dayglow. J. Geophys. Res. 1987, 92:12445-12450. 10.1029/JA092.
Hedin A.E., Niemann H.B., Kasprzak W.T., Seiff A. Global empirical model of the Venus thermosphere. J. Geophys. Res. 1983, 88:73-83.
Hubert B., Gérard J.C., Gustin J., Shematovich V.I., Bisikalo D.V., Stewart A.I., Gladstone G.R. UVIS observations of the FUV OI and CO 4P Venus dayglow during the Cassini flyby. Icarus 2010, 207:549-557. 10.1016/j.icarus.2009.12.029.
James G.K., Ajello J.M., Kanik I., Franklin B., Shemansky D.E. The extreme ultraviolet emission spectrum of CO produced by electron impact at 20 and 200eV. J. Phys. B 1992, 25:1481-1496.
Kanik I., Ajello J.M., James G.K. Extreme ultraviolet emission spectrum of CO2 induced by electron impact at 200eV. Chem. Phys. Lett. 1993, 211:523-528.
Kanik I., James G.K., Ajello J.M. Medium-resolution studies of extreme-ultraviolet emission from CO by electron impact. Phys. Rev. A 1995, 51:2067-2074.
Krasnopolsky V.A., Feldman P.D. Far ultraviolet spectrum of Mars. Icarus 2002, 160:86-94. 10.1006/icar.2002.6949.
Link R., Evans J., Gladstone G. The O+ 834-Å dayglow: Revised cross sections. J. Geophys. Res. 1994, 99:2121-2130.
Meier R.R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci. Rev. 1991, 58:1-185.
Meier R.R., Anderson D.E., Paxton L.J., McCoy R.P., Chakrabarti S. The OI 3d 3D-2p4 3P transition at 1026Å in the day airglow. J. Geophys. Res. 1987, 92:8767-8773. 10.1029/JA092iA08p08767.
Moos H.W., Rottman G.J. OI and HI emissions from the upper atmosphere of Venus. Astrophys. J. 1971, 169:L127.
Moos H.W., Fastie W.G., Bottema M. Rocket measurement of ultraviolet spectra of Venus and Jupiter between 1200-1800Å. Astrophys. J. 1969, 155:887-897.
Paxton, L.J., Anderson, D.E., 1992. Far ultraviolet remote sensing of Venus and Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions. AGU Geophysical Monograph, vol. 66. American Geophysical Union, Washington, DC, pp. 113-189.
Ralchenko, Yu., Kramida, A.E., Reader, J., and NIST ASD Team, 2008. NIST Atomic Spectra Database (version 3.1.5). National Institute of Standards and Technology, Gaithersburg, MD. (2010, February 19). http://www.physics.nist.gov/asd3.
Rottman G.J., Moos H.W. The ultraviolet (1200-1900 angstrom) spectrum of Venus. J. Geophys. Res. 1973, 78:8033-8048.
Samson J.A.R., Chung Y., Lee E.-M. Excited ionic and neutral fragments produced by dissociation of the N2+* H band. J. Chem. Phys. 1991, 95:717-719.
Shematovich V.I., Bisikalo D.V., Gérard J.-C., Cox C., Bougher S.W., Leblanc F. Monte Carlo model of the electron transport for the calculations of Mars dayglow emissions. J. Geophys. Res. 2008, 113:E02011. 10.1029/2007JE002938.
Shirai T., Tabata T., Tawara H. Analytic cross sections for electron collisions with CO, CO2, and H2O relevant to edge plasma impurities. Atom. Data Nucl. Data Tables 2001, 79:143-184.
Steffl A.J., Stewart A.I.F., Bagenal F. Cassini UVIS observations of the Io plasma torus. I. Initial results. Icarus 2004, 172:78-90.
Stewart A.I. Design and operation of the Pioneer Venus orbiter ultraviolet spectrometer. IEEE Trans. Geosci. Remote Sensing GE 1980, 18:65-70.
Stewart A.I., Barth C.A. Ultraviolet night airglow of Venus. Science 1979, 205:59-62.
Stone E.J., Zipf E.C. Excitation of atomic nitrogen by electron impact. J. Chem. Phys. 1973, 58:4278. 10.1063/1.
Tabata T., Shirai T., Sataka M., Kubo H. Analytic cross sections for electron impact collisions with nitrogen molecules. Atom. Data Nucl. Data Tables 2006, 92:375-406.
Tobiska W.K. SOLAR2000 irradiances for climate change, aeronomy and space system engineering. Adv. Space Res. 2004, 34:1736-1746.
Vaughan S., Doering J. Absolute experimental differential and integral electron excitation cross sections for atomic oxygen, 3. The (3P→3D) transition (989Å) from 20 to 200eV with improved values for the (3P→3S) transition (1304Å). J. Geophys. Res. 1987, 92:7749-7752.
Woods T., Rottman G. Ultraviolet variability over time periods of aeronomic interest, atmospheres in the Solar System: Comparative aeronomy. Geophysical Monograph 2002, vol. 130:221. American Geophysical Union, Washington, DC.
Wu C.Y.R. Fluorescence excitation function of NI 1200-A and cross sections for fluorescence photon-photoion coincidence produced through photoexcitation of N2. J. Geophys. Res. 1994, 99:8971-8979.
Zipf E.C., Erdman P.W. Electron impact excitation of atomic oxygen: Revised cross sections. J. Geophys. Res. 1985, 90:11087-11110.