Planetary Sciences: Solid Surface Planets: Atmospheres (0343; 1060); Planetary Sciences: Solid Surface Planets: Aurorae and airglow; Planetary Sciences: Solid Surface Planets: Composition (1060; 3672); Planetary Sciences: Solar System Objects: Venus
Abstract :
[en] Venus Express (VEX) has been monitoring key nightglow emissions and thermal features (O[SUB]2[/SUB] IR nightglow, NO UV nightglow, and nightside temperatures) which contribute to a comprehensive understanding of the global dynamics and circulation patterns above ˜90 km. The nightglow emissions serve as effective tracers of Venus' middle and upper atmosphere global wind system due to their variable peak brightness and horizontal distributions. A statistical map has been created utilizing O[SUB]2[/SUB] IR nightglow VEX observations, and a statistical map for NO UV is being developed. A nightside warm layer near 100 km has been observed by VEX and ground-based observations. The National Center for Atmospheric Research (NCAR) Venus Thermospheric General Circulation Model (VTGCM) has been updated and revised in order to address these key VEX observations and to provide diagnostic interpretation. The VTGCM is first used to capture the statistically averaged mean state of these three key observations. This correspondence implies a weak retrograde superrotating zonal flow (RSZ) from ˜80 km to 110 km and above 110 km the emergence of modest RSZ winds approaching 60 m s[SUP]-1[/SUP] above ˜130 km. Subsequently, VTGCM sensitivity tests are performed using two tuneable parameters (the nightside eddy diffusion coefficient and the wave drag term) to examine corresponding variability within the VTGCM. These tests identified a possible mechanism for the observed noncorrelation of the O[SUB]2[/SUB] and NO emissions. The dynamical explanation requires the nightglow layers to be at least ˜15 km apart and the retrograde zonal wind to increase dramatically over 110 to 130 km.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Brecht, A. S.; Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA) ; AB(Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA) ; AC(Laboratoire de Physique Atmosphérique et Planétaire, Université de Liège, Liège, Belgium) ; AD(Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA) ; AE(Department of Space Studies, Southwest Research Institute, Boulder, Colorado, USA) ; AF(High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado, USA
Bougher, Stephen W.
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Parkinson, C. D.
Rafkin, S.
Foster, B.
Language :
English
Title :
Understanding the variability of nightside temperatures, NO UV and O2 IR nightglow emissions in the Venus upper atmosphere
Publication date :
01 August 2011
Journal title :
Journal of Geophysical Research. Planets
ISSN :
2169-9097
eISSN :
2169-9100
Publisher :
American Geophysical Union (AGU), Washington D.C., United States
Alexander, M. J. (1992), A mechanism for the Venus thermospheric superrotation, Geophys. Res. Lett., 19, 2207-2210, doi:10.1029/92GL02110.
Anicich, V. G. (1993), Evaluated bimolecular ion-molecule gas phase kinetics of positive ions for use in modeling planetary atmospheres, cometary comae, and interstellar clouds, J. Phys. Chem. Ref. Data, 22, 1469-1569, doi:10.1063/1.555940.
Bailey, J., S. Chamberlain, D. Crisp, and V. S. Meadows (2008), Near infrared imaging spectroscopy of Venus with the Anglo-Australian Telescope, Planet. Space Sci., 56, 1385-1390, doi:10.1016/j.pss.2008.03.006.
Baulch, D. L., D. Drysdale, D. G. Horne, and A. C. Lloyd (1973), Homogeneous gas phase reactions of the H2-N2-O2 system, in Evaluated Kinetic Data for High Temperature Reactions, vol. 2, pp. 1-557, Chem. Rubber Co. Press, Cleveland, Ohio.
Baulch, D. L., R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, and R. T. Watson (1980), Evaluated kinetic and photochemical data for atmospheric chemistry, J. Phys. Chem. Ref. Data, 9, 295-471, doi:10.1063/ 1.555619.
Bertaux, J., et al. (2007), A warm layer in Venus' cryosphere and highaltitude measurements of HF, HCl, H2O and HDO, Nature, 450, 646-649, doi:10.1038/nature05974. (Pubitemid 350207677)
Bougher, S. W., and W. J. Borucki (1994), Venus O2 visible and IR nightglow: Implications for lower thermosphere dynamics and chemistry, J. Geophys. Res., 99, 3759-3776, doi:10.1029/93JE03431.
Bougher, S. W., R. E. Dickinson, E. C. Ridley, R. G. Roble, A. F. Nagy, and T. E. Cravens (1986), Venus mesosphere and thermosphere. II -Global circulation, temperature, and density variations, Icarus, 68, 284-312, doi:10.1016/0019-1035(86)90025-4.
Bougher, S. W., R. G. E. Roble, R. E. Dickinson, and E. C. Ridley (1988), Venus mesosphere and thermosphere. III -Three-dimensional general circulation with coupled dynamics and composition, Icarus, 73, 545-573, doi:10.1016/0019- 1035(88)90064-4.
Bougher, S. W., J.-C. Gérard, A. I. F. Stewart, and C. G. Fesen (1990), The Venus nitric oxide night airglow: Model calculations based on the Venus Thermospheric General Circulation Model, J. Geophys. Res., 95, 6271-6284, doi:10.1029/JA095iA05p06271.
Bougher, S. W., D. M. Hunten, and R. G. Roble (1994), CO2 cooling in terrestrial planet thermospheres, J. Geophys. Res., 99, 14,609-14,622, doi:10.1029/94JE01088.
Bougher, S. W., M. J. Alexander, and H. G. Mayr (1997), Upper Atmosphere Dynamics: Global Circulation and Gravity Waves, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, edited by S. W. Bougher, D. M. Hunten, and R. J. Phillips, pp. 259-291, Univ. of Ariz. Press, Tucson.
Bougher, S. W., S. Engel, R. G. Roble, and B. Foster (1999), Comparative terrestrial planet thermospheres: 2. Solar cycle variation of global structure and winds at equinox, J. Geophys. Res., 104, 16,591-16,611, doi:10.1029/ 1998JE001019.
Bougher, S. W., R. G. Roble, and T. Fuller-Rowell (2002), Simulations of the Upper Atmospheres of the Terrestrial Planets, in Atmospheres in the Solar System: Comparative Aeronomy; Geophys. Monogr. Ser., vol. 130, edited by M. Mendillo, A. Nagy, and J. H. Waite, pp. 261-288, AGU, Washington, D. C.
Bougher, S. W., S. Rafkin, and P. Drossart (2006), Dynamics of the Venus upper atmosphere: Outstanding problems and new constraints expected from Venus Express, Planet. Space Sci., 54, 1371-1380, doi:10.1016/j. pss.2006.04.023. (Pubitemid 44691847)
Bougher, S. W., P. Blelly, M. Combi, J. L. Fox, I. Mueller-Wodarg, A. Ridley, and R. G. Roble (2008), Neutral upper atmosphere and ionosphere modeling, Space Sci. Rev., 139, 107-141, doi:10.1007/s11214-008-9401-9.
Brecht, A., S. Bougher, S. Rafkin, and B. Foster (2007), Venus upper atmosphere winds traced by night airglow distributions: NCAR VTGCM simulations, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract P33B-1299.
Brecht, A., S. W. Bougher, C. D. Parkinson, Y. L. Yung, and S. C. Rafkin (2009), Understanding the variability of nightside temperatures and airglow emissions in Venus' middle and upper atmosphere: NCAR VTGCM simulations, Eos Trans. AGU, 90(52), Fall Meet. Suppl., Abstract P33A-1267.
Campbell, I. M., and C. N. Gray (1973), Rate constants for O( 3P) recombination and association with N(4S), Chem. Phys. Lett., 18, 607-609, doi:10.1016/0009-2614(73)80479-8.
Campbell, I. M., and B. A. Thrush (1966), Behaviour of carbon dioxide and nitrous oxide in active nitrogen, Trans. Faraday Soc., 62, 3366-3374, doi:10.1039/tf9666203366.
Clancy, R. T., and D. O. Muhleman (1991), Long-term (1979-1990) changes in the thermal, dynamical, and compositional structure of the Venus mesosphere as inferred from microwave spectral line observations of 12CO, 13CO, and C18O, Icarus, 89, 129-146, doi:10.1016/0019-1035 (91)90093-9.
Clancy, R. T., B. J. Sandor, and G. H. Moriarty-Schieven (2003), Observational definition of the Venus mesopause: Vertical structure, diurnal variation, and temporal instability, Icarus, 161, 1-16, doi:10.1016/S0019- 1035(02)00022-2. (Pubitemid 36309124)
Clancy, R. T., B. J. Sandor, and G. H. Moriarty-Schieven (2008), Venus upper atmospheric CO, temperature, and winds across the afternoon/ evening terminator from June 2007 JCMT sub-millimeter line observations, Planet. Space Sci., 56, 1344-1354, doi:10.1016/j.pss.2008.05.007.
Collet, A., C. Cox, and J. C. Gérard (2010), Two-dimensional timedependent model of the transport of minor species in the Venus night side upper atmosphere, Planet. Space Sci., 58, 1857-1867, doi:10.1016/j. pss.2010.08.016.
Connes, P., J. F. Noxon, W. A. Traub, and N. P. Carleton (1979), O 2 (1Δ) emission in the day and night airglow of Venus, Astrophys. J., 233, L29-L32, doi:10.1086/183070.
Cox, C. (2010), Analyse et modélisation des émissions ultraviolettes de l'atmosphère de Vénus et de Mars à l'aide des instruments SPICAM et SPICAV, Ph.D. thesis, Univ. de Liège, Liége, France.
Crisp, D., V. S. Meadows, B. Bézard, C. de Bergh, J. Maillard, and F. P. Mills (1996), Ground-based near-infrared observations of the Venus nightside: 1.27-mm O2 (aDg) airglow from the upper atmosphere, J. Geophys. Res., 101, 4577-4593, doi:10.1029/95JE03136. (Pubitemid 126678330)
Dalgarno, A., J. F. Babb, and Y. Sun (1992), Radiative association in planetary atmospheres, Planet. Space Sci., 40, 243-246, doi:10.1016/0032- 0633(92)90062-S.
Deming, D., and M. J. Mumma (1983), Modeling of the 10-micron natural laser emission from the mesospheres of Mars and Venus, Icarus, 55, 356-368, doi:10.1016/0019-1035(83)90108-2.
Dickinson, R. E. (1972), Infrared radiative heating and cooling in the Venusian mesosphere. I. Global mean radiative equilibrium, J. Atmos. Sci., 29, 1531-1556, doi:10.1175/1520-0469(1972)0292.0. CO;2.
Dickinson, R. E., and S. W. Bougher (1986), Venus mesosphere and thermosphere: 1. Heat budget and thermal structure, J. Geophys. Res., 91, 70-80, doi:10.1029/JA091iA01p00070.
Dickinson, R. E., and E. C. Ridley (1972), Numerical solution for the composition of a thermosphere in the presence of a steady subsolar to-antisolar circulation with application to Venus, J. Atmos. Sci., 29(8), 1557-1570, doi:10.1175/1520-0469(1972)0292.0.CO;2.
Dickinson, R. E., and E. C. Ridley (1977), Venus mesosphere and thermosphere temperature structure. II -Day-night variations, Icarus, 30, 163-178, doi:10.1016/0019-1035(77)90130-0.
Drossart, P., et al. (2007), A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express, Nature, 450, 641-645, doi:10.1038/ nature06140. (Pubitemid 350207682)
Fehsenfeld, F. C., D. B. Dunkin, and E. E. Ferguson (1970), Rate constants for the reaction of CO2+ with O, O2 and NO; N2+ with O and NO; and O2+ with NO, Planet. Space Sci., 18, 1267-1269, doi:10.1016/0032-0633(70) 90216-3.
Feldman, P. D., H. W. Moos, J. T. Clarke, and A. L. Lane (1979), Identification of the UV nightglow from Venus, Nature, 279, doi:10.1038/ 279221a0.
Fox, J. L. (1988), Heating efficiencies in the thermosphere of Venus reconsidered, Planet. Space Sci., 36, 37-46, doi:10.1016/0032-0633(88) 90144-4.
Fox, J. L. (1994), Rate coefficient for the reaction N + NO, J. Geophys. Res., 99, 6273-6276, doi:10.1029/93JA03299.
Fox, J. L., and K. Y. Sung (2001), Solar activity variations of the Venus thermosphere/ionosphere, J. Geophys. Res., 106, 21,305-21,335, doi:10.1029/2001JA000069. (Pubitemid 33727430)
Fox, J. L., M. I. Galand, and R. E. Johnson (2008), Energy deposition in planetary atmospheres by charged particles and solar photons, Space Sci. Rev., 139, 3-62, doi:10.1007/s11214-008-9403-7.
Garcia, R. F., P. Drossart, G. Piccioni, M. López-Valverde, and G. Occhipinti (2009), Gravity waves in the upper atmosphere of Venus revealed by CO2 nonlocal thermodynamic equilibrium emissions, J. Geophys. Res., 114, E00B32, doi:10.1029/2008JE003073.
Gérard, J. C., A. I. F. Stewart, and S. W. Bougher (1981), The altitude distribution of the Venus ultraviolet nightglow and implications on vertical transport, Geophys. Res. Lett., 8, 633-636, doi:10.1029/ GL008i006p00633.
Gérard, J., B. Hubert, V. I. Shematovich, D. V. Bisikalo, and G. R. Gladstone (2008a), The Venus ultraviolet oxygen dayglow and aurora: Model comparison with observations, Planet. Space Sci., 56, 542-552, doi:10.1016/ j.pss.2007.11.008.
Gérard, J. C., A. Saglam, G. Piccioni, P. Drossart, C. Cox, S. Erard, R. Hueso, and A. Sánchez-Lavega (2008b), Distribution of the O2 infrared nightglow observed with VIRTIS on board Venus Express, Geophys. Res. Lett., 35, L02207, doi:10.1029/2007GL032021. (Pubitemid 351392132)
Gérard, J.-C., C. Cox, A. Saglam, J.-L. Bertaux, E. Villard, and C. Nehmé (2008c), Limb observations of the ultraviolet nitric oxide nightglow with SPICAV on board Venus Express, J. Geophys. Res., 113, E00B03, doi:10.1029/2008JE003078.
Gérard, J. C., A. Saglam, G. Piccioni, P. Drossart, F. Montmessin, and J. Bertaux (2009a), Atomic oxygen distribution in the Venus mesosphere from observations of O2 infrared airglow by VIRTIS-Venus Express, Icarus, 199, 264-272, doi:10.1016/j.icarus.2008.09.016.
Gérard, J. C., C. Cox, L. Soret, A. Saglam, G. Piccioni, J. Bertaux, and P. Drossart (2009b), Concurrent observations of the ultraviolet nitric oxide and infrared O2 nightglow emissions with Venus Express, J. Geophys. Res., 114, E00B44, doi:10.1029/2009JE003371.
Gérard, J. C., L. Soret, A. Saglam, G. Piccioni, and P. Drossart (2010), The distributions of the OH Meinel and O2(a1D -X3S) nightglow emissions in the Venus mesosphere based on VIRTIS observations, Adv. Space Res., 45, 1268-1275, doi:10.1016/j.asr.2010.01.022.
Gilli, G., M. A. López-Valverde, P. Drossart, G. Piccioni, S. Erard, and A. Cardesín Moinelo (2009), Limb observations of CO 2 and CO non-LTE emissions in the Venus atmosphere by VIRTIS/Venus Express, J. Geophys. Res., 114, E00B29, doi:10.1029/2008JE003112.
Goldstein, J. J., M. J. Mumma, T. Kostiuk, D. Deming, F. Espenak, and D. Zipoy (1991), Absolute wind velocities in the lower thermosphere of Venus using infrared heterodyne spectroscopy, Icarus, 94, 45-63, doi:10.1016/0019-1035(91) 90140-O.
Gordiets, B. F., and V. I. Panchenko (1983), Nonequilibrium infrared emission and the natural laser effect in the Venus and Mars atmospheres, Cosmic Res., Engl. Transl., 21, 725-734. (Pubitemid 14604381)
Gougousi, T. (1997), Electron-ion recombination rate coefficient measurements in a flowing afterglow plasma, Chem. Phys. Lett., 265, 399-403, doi:10.1016/S0009-2614(96)01488-1. (Pubitemid 127163734)
Hampson, R. F., Jr. (1980), Chemical kinetic and photochemical data sheets for atmospheric reactions, Rep. FAA-EE-80-17, U.S. Dep. of Transp., FAA Off. of Environ. and Energy, High Altitude Pollut. Program, Washington, D. C.
Hedin, A. E., H. B. Niemann, W. T. Kasprzak, and A. Seiff (1983), Global empirical model of the Venus thermosphere, J. Geophys. Res., 88, 73-83, doi:10.1029/JA088iA01p00073.
Herron, J. (1999), Evaluated chemical kinetics data for reactions of N(2D) N(2P), and N2 (A3Σ u+) in the gas phase, J. Phys. Chem. Ref. Data, 28, 1453-1483, doi:10.1063/1.556043.
Hierl, P. M., I. Dotan, J. V. Seeley, J. M. van Doren, R. A. Morris, and A. A. Viggiano (1997), Rate constants for the reactions of O+ with N2 and O2 as a function of temperature (300-1800 K), J. Chem. Phys., 106, 3540-3544, doi:10.1063/1.473450.
Hueso, R., A. Sánchez-Lavega, G. Piccioni, P. Drossart, J. C. Gérard, I. Khatuntsev, L. Zasova, and A. Migliorini (2008), Morphology and dynamics of Venus oxygen airglow from Venus Express/Visible and Infrared Thermal Imaging Spectrometer observations, J. Geophys. Res., 113, E00B02, doi:10.1029/2008JE003081.
Huestis, D. L. (2002), Current laboratory experiments for planetary aeronomy, in Atmospheres in the Solar System: Comparative Aeronomy, Geophys. Monogr. Ser., vol. 130, edited by M. Mendillo, A. Nagy, and J. H. Waite, pp. 245-258, AGU, Washington, D. C.
Jamieson, C., R. M. Garcia, D. A. Pejakovic, and K. S. Kalogerakis (2009a), Oxygen atom recombination in carbon dioxide atmospheres, paper presented at Meeting Abstracts, AAS, Div. for Planet. Sci., Am. Astron. Soc., Fajardo, Puerto Rico.
Jamieson, C. S., R. M. Garcia, D. Pejakovic, and K. Kalogerakis (2009b), The kinetics of oxygen atom recombination in the presence of carbon dioxide, Eos Trans. AGU, 90(52), Fall Meet. Suppl., Abstract P51D-1156.
Kasprzak, W. T., A. E. Hedin, H. G. Mayr, and H. B. Niemann (1988), Wavelike perturbations observed in the neutral thermosphere of Venus, J. Geophys. Res., 93, 11,237-11,245, doi:10.1029/JA093iA10p11237.
Kasprzak, W. T., H. B. Niemann, A. E. Hedin, S. W. Bougher, and D. M. Hunten (1993), Neutral composition measurements by the Pioneer Venus Neutral Mass Spectrometer during Orbiter re-entry, Geophys. Res. Lett., 20, 2747-2750, doi:10.1029/93GL02241.
Kasprzak, W. T., G. M. Keating, N. C. Hsu, A. I. F. Stewart, W. B. Colwell, and S. W. Bougher (1997), Solar activity behavior of the thermosphere, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, edited by S. W. Bougher, D. M. Hunten, and R. J. Phillips, p. 225-257, Univ. of Ariz. Press, Tucson.
Keating, G. M., F. W. Taylor, J. Y. Nicholson, and E. W. Hinson (1979), Short-term cyclic variations and diurnal variations of the Venus upper atmosphere, Science, 205, 62-64, doi:10.1126/science.205.4401.62.
Keating, G. M., J. Y. Nicholson, and L. R. Lake (1980), Venus upper atmosphere structure, J. Geophys. Res., 85, 7941-7956, doi:10.1029/ JA085iA13p07941.
Keating, G. M., J. L. Bertaux, S. W. Bougher, R. E. Dickinson, T. E. Cravens, and A. E. Hedin (1985), Models of Venus neutral upper atmosphere-Structure and composition, Adv. Space Res., 5, 117-171, doi:10.1016/ 0273-1177(85)90200-5.
Krasnopolsky, V. A. (2010), Venus night airglow: Ground-based detection of OH, observations of O2 emissions, and photochemical model, Icarus, 207, 17-27, doi:10.1016/j.icarus.2009.10.019.
Lellouch, E., T. Clancy, D. Crisp, A. J. Kliore, D. Titov, and S. W. Bougher (1997), Monitoring of mesospheric structure and dynamics, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, edited by S. W. Bougher, D. M. Hunten, and R. J. Phillips, pp. 295-324, Univ. of Ariz. Press, Tucson.
López-Valverde, M. A., P. Drossart, R. Carlson, R. Mehlman, and M. Roos-Serote (2007), Non-LTE infrared observations at Venus: From NIMS/Galileo to VIRTIS/Venus Express, Planet. Space Sci., 55, 1757-1771, doi:10.1016/j.pss. 2007.01.008. (Pubitemid 47496168)
Maillard, J., E. Lellouch, J. Crovisier, C. de Bergh, and B. Bézard (1995), Carbon monoxide 4.7 mm emission: A new dynamical probe of Venus' thermosphere, Bull. Am. Astron. Soc., 27, 1080.
Markiewicz, W. J., D. V. Titov, S. S. Limaye, H. U. Keller, N. Ignatiev, R. Jaumann, N. Thomas, H. Michalik, R. Moissl, and P. Russo (2007), Morphology and dynamics of the upper cloud layer of Venus, Nature, 450, 633-636, doi:10.1038/nature06320. (Pubitemid 350207688)
Massie, S. T., D. M. Hunten, and D. R. Sowell (1983), Day and night models of the Venus thermosphere, J. Geophys. Res., 88, 3955-3969, doi:10.1029/JA088iA05p03955.
Mehr, F. J., and M. A. Biondi (1969), Electron temperature dependence of recombination of O2+ and N2 + ions with electrons, Phys. Rev., 181, 264-271, doi:10.1103/PhysRev.181.264.
Midey, A. J., and A. A. Viggiano (1999), Rate constants for the reaction of O2+ with NO from 300 to 1400 K, J. Chem. Phys., 110, 10,746-10,748, doi:10.1063/1.479017.
Moissl, R., et al. (2009), Venus cloud top winds from tracking UV features in Venus Monitoring Camera images, J. Geophys. Res., 114, E00B31, doi:10.1029/2008JE003117.
Nair, H., M. Allen, A. D. Anbar, Y. L. Yung, and R. T. Clancy (1994), A photochemical model of the martian atmosphere, Icarus, 111, 124-150, doi:10.1006/icar.1994.1137.
Ohtsuki, S., N. Iwagami, H. Sagawa, Y. Kasaba, M. Ueno, and T. Imamura (2005), Ground-based observation of the Venus 1.27-mm O2 airglow, Adv. Space Res., 36, 2038-2042, doi:10.1016/j.asr.2005.05.078. (Pubitemid 41660023)
Ohtsuki, S., N. Iwagami, H. Sagawa, M. Ueno, Y. Kasaba, T. Imamura, and E. Nishihara (2008), Imaging spectroscopy of the Venus 1.27-mm O2 airglow with ground-based telescopes, Adv. Space Res., 41, 1375-1380, doi:10.1016/j.asr.2007.10.014.
Pätzold, M., et al. (2007), The structure of Venus' middle atmosphere and ionosphere, Nature, 450, 657-660, doi:10.1038/nature06239. (Pubitemid 350207684)
Peralta, J., R. Hueso, A. Sánchez-Lavega, G. Piccioni, O. Lanciano, and P. Drossart (2008), Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEX-VIRTIS images, J. Geophys. Res., 113, E00B18, doi:10.1029/2008JE003185.
Piccioni, G., et al. (2008), First detection of hydroxyl in the atmosphere of Venus, Astron. Astrophys., 483, L29-L33, doi:10.1051/0004-6361: 200809761. (Pubitemid 351697300)
Piccioni, G., L. Zasova, A. Migliorini, P. Drossart, A. Shakun, A. García Muñoz, F. P. Mills, and A. Cardesin-Moinelo (2009), Near-IR oxygen nightglow observed by VIRTIS in the Venus upper atmosphere, J. Geophys. Res., 114, E00B38, doi:10.1029/2008JE003133.
Rengel, M., P. Hartogh, and C. Jarchow (2008), Mesospheric vertical thermal structure and winds on Venus from HHSMT CO spectral-line observations, Planet. Space Sci., 56, 1368-1384, doi:10.1016/j.pss.2008. 07.004
Roldán, C., M. A. López-Valverde, M. López-Puertas, and D. P. Edwards (2000), Non-LTE Infrared Emissions of CO2 in the Atmosphere of Venus, Icarus, 147, 11-25, doi:10.1006/icar.2000.6432.
Sánchez-Lavega, A., et al. (2008), Variable winds on Venus mapped in three dimensions, Geophys. Res. Lett., 35, L13204, doi:10.1029/ 2008GL033817.
Sander, S. P., et al. (2003), Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation 14, JPL Publ., 02-25.
Schofield, J. T., and F. W. Taylor (1983), Measurements of the mean, solar-fixed temperature and cloud structure of the middle atmosphere of Venus, Q. J. R. Meteorol. Soc., 109, 57-80, doi:10.1002/ qj.49710945904.
Schubert, G., et al. (1980), Structure and circulation of the Venus atmosphere, J. Geophys. Res., 85, 8007-8025, doi:10.1029/JA085iA13p08007.
Schubert, G., S. W. Bougher, A. D. Covey, C. C. Del Genio, A. S. Grossman, J. L. Hollingsworth, S. S. Limaye, and R. E. Young (2007), Venus atmosphere dynamics: A continuing enigma, in Exploring Venus as Terrestrial Planet, Geophys.Monogr. Ser., vol. 176, edited by L. W. Esposito, E. R. Stofan, and T. E. Cravens, pp. 121-138, AGU, Washington, D. C.
Scott, G. B. I., D. A. Fairley, C. G. Freeman, M. J. McEwan, and V. G. Anicich (1998), Gas-phase reactions of some positive ions with atomic and molecular nitrogen, J. Chem. Phys., 109, 9010-9014, doi:10.1063/1.477571. (Pubitemid 128672481)
Seiff, A., and D. B. Kirk (1982), Structure of the Venus mesosphere and lower thermosphere from measurements during entry of the Pioneer Venus probes, Icarus, 49, 49-70, doi:10.1016/0019-1035(82)90056-2.
Seiff, A., J. T. Schofield, A. J. Kliore, F. W. Taylor, and S. S. Limaye (1985), Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude, Adv. Space Res., 5, 3-58, doi:10.1016/ 0273-1177(85)90197-8.
Shah, K. P., D. O. Muhleman, and G. L. Berge (1991), Measurement of winds in Venus' upper mesosphere based on Doppler shifts of the 2.6-mm 12CO line, Icarus, 93, 96-121, doi:10.1016/0019-1035(91)90167-R.
Soret, L. J. C. Gérard, A. Saglam, G. Piccioni, and P. Drossart (2009), Latitudinal-local time distribution of the O2 and OH infrared nightglows and O density in the Venus lower thermosphere, paper presented at European Planetary ScienceCongress, Potsdam, German. (Available at http://meetings.copernicus.org/epsc2009.)
Soret, L., J. C. Gérard, G. Piccioni, and P. Drossart (2010), Venus OH nightglow distribution from VIRTIS limb observations from Venus Express, Geophys. Res. Lett., 37, L06805, doi:10.1029/2010GL042377.
Soret, L., J. C. Gérard, F. Montmessin, G. Piccioni, P. Drossart, and J.-L. Bertaux (2011), Atomic oxygen on the Venus nightside: Global distribution deduced from airglow mapping, Icarus, doi:10.1016/j. icarus.2011.03.034, in press.
Sornig, M., T. Livengood, G. Sonnabend, P. Kroetz, D. Stupar, T. Kostiuk, and R. Schieder (2008), Venus upper atmosphere winds from groundbased heterodyne spectroscopy of CO2 at 10 mm wavelength, Planet. Space Sci., 56, 1399-1406, doi:10.1016/j.pss.2008.05.006.
Stepanova, G. I., and G. M. Shved (1985), Radiative transfer in the 4.3-mm CO2 and 4.7-mm CO bands in the non-LTE Venus and Mars atmospheres: Transformation of absorbed solar energy, Sov. Astron., Engl. Transl., 29, 528-530.
Stewart, A. I., and C. A. Barth (1979), Ultraviolet night airglow of Venus, Science, 205, 59-62, doi:10.1126/science.205.4401.59.
Stewart, A. I. F., J. Gerard, D. W. Rusch, and S. W. Bougher (1980), Morphology of the Venus ultraviolet night airglow, J. Geophys. Res., 85, 7861-7870, doi:10.1029/JA085iA13p07861.
Svedhem, H., D. Titov, F. Taylor, and O. Witasse (2009), Venus Express mission, J. Geophys. Res., 114, E00B33, doi:10.1029/2008JE003290.
Vejby-Christensen, L., D. Kella, H. B. Pedersen, and L. H. Andersen (1998), Dissociative recombination of NO+, Phys. Rev. A, 57, 3627-3634, doi:10.1103/PhysRevA.57.3627.
von Zahn, U., K. H. Fricke, H. Hoffmann, and K. Pelka (1979), Venus: Eddy coefficients in the thermosphere and the inferred helium content of the lower atmosphere, Geophys. Res. Lett., 6, 337-340, doi:10.1029/ GL006i005p00337.
Widemann, T., E. Lellouch, and J. Donati (2008), Venus Doppler winds at cloud tops observed with ESPaDOnS at CFHT, Planet. Space Sci., 56, 1320-1334, doi:10.1016/j.pss.2008.07.005.
Yung, Y. L., and W. B. Demore (1982), Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution, Icarus, 51, 199-247, doi:10.1016/0019-1035(82)90080-X.
Zasova, L. V., V. I. Moroz, V. M. Linkin, I. V. Khatuntsev, and B. S. Maiorov (2006), Structure of the Venusian atmosphere from surface up to 100 km, Cosmic Res., Engl. Transl., 44, 364-383, doi:10.1134/ S0010952506040095. (Pubitemid 44273682)
Zhang, S., S. W. Bougher, and M. J. Alexander (1996), The impact of gravity waves on the Venus thermosphere and O2 IR nightglow, J. Geophys. Res., 101, 23,195-23,205, doi:10.1029/96JE02035. (Pubitemid 126666467)