![]() ![]() | Mihaylov, B., Fathalla, E., & Trandafir, A. (2025). Rapid crack-based assessment of deep beams based on a single crack measurement. Engineering Structures, 322, 119054. doi:10.1016/j.engstruct.2024.119054 ![]() |
![]() ![]() | Palipana, D. K., Trandafir, A., Mihaylov, B., & Proestos, G. T. (November 2024). Quantification of shear transfer mechanisms in reinforced concrete deep beams using measured experimental data. Engineering Structures, 318, 118711. doi:10.1016/j.engstruct.2024.118711 ![]() |
![]() ![]() | Trandafir, A., Palipana, D. K., Proestos, G. T., & Mihaylov, B. (October 2024). The importance and use of vertical crack displacements for the assessment of existing reinforced concrete deep beams. Engineering Structures, 316, 118635. doi:10.1016/j.engstruct.2024.118635 ![]() |
![]() ![]() | Trandafir, A. (2024). Shear Assessment of Critical Concrete Members in Existing Infrastructure [Doctoral thesis, ULiège - University of Liège]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/309332 |
![]() ![]() | Trandafir, A., Ernens, G., & Mihaylov, B. (26 July 2023). Crack-Based Evaluation of Internally FRP-Reinforced Concrete Deep Beams without Shear Reinforcement. Journal of Composites for Construction, 27 (5). doi:10.1061/JCCOF2.CCENG-4232 ![]() |
![]() ![]() | Trandafir, A., & Mihaylov, B. (2023). Crack-based modeling of FRP-reinforced deep beams without transverse reinforcement. In Building for the Future: Durable, Sustainable, Resilient. Switzerland: Springer Nature. doi:10.1007/978-3-031-32511-3_50 ![]() |
![]() ![]() | Trandafir, A., Proestos, G. T., & Mihaylov, B. (08 September 2022). Detailed crack-based assessment of a 4-m deep beam test specimen. Structural Concrete, 24 (1), 756 - 770. doi:10.1002/suco.202200149 ![]() |
![]() ![]() | Park, J., Trandafir, A., Stathas, N., Strepelias, E., Palios, X., Kwon, O.-S., Mihaylov, B., & Bousias, S. (2022). Hybrid Simulation Testing of Coupling Beams. In Springer Proceedings in Earth and Environmental Sciences (pp. 417–432). Springer Nature. doi:10.1007/978-3-031-15104-0_25 ![]() |
![]() ![]() | Trandafir, A., Proestos, G. T., & Mihaylov, B. (2022). Crack-Based Assessment of a 4-meter Deep Beam Test. In Concrete Innovation for Sustainability. Oslo, Norway: Novus Press. ![]() |
![]() ![]() | Palipana, D., Trandafir, A., Mihaylov, B., & Proestos, G. (01 May 2022). Framework for Quantification of Shear-Transfer Mechanisms from Deep Beam Experiments. ACI Structural Journal, 119 (3). doi:10.14359/51734485 ![]() |
![]() ![]() | Trandafir, A., Palipana, D. K., Proestos, G. T., & Mihaylov, B. (2022). Framework for Crack-Based Assessment of Existing Lightly Reinforced Concrete Deep Members. ACI Structural Journal, 119 (1), 255 - 266. doi:10.14359/51733143 ![]() |
![]() ![]() | Trandafir, A., & Mihaylov, B. (2022). Kinematics-Based Modelling of Shear Critical Coupling Beams with and without FRP Strengthening. In Proceedings of the Third European Conference on Earthquake Engineering and Seismology – 3ECEES. Bucharest, Romania: CONSPRESS. ![]() |
![]() ![]() | Mihaylov, B., Trandafir, A., Palios, X., Strepelias, E., & Bousias, S. (01 July 2021). Effect of axial restraint and loading history on the behavior of short reinforced concrete coupling beams. ACI Structural Journal, 118 (4), 71-82. doi:10.14359/51732644 ![]() |
![]() ![]() | Trandafir, A., Palipana, D., Proestos, G., & Mihaylov, B. (2021). Direct Crack-Based Assessment Approach for Shear Critical Reinforced Concrete Deep Beams. In Concrete Structures: New Trends for Eco-Efficiency and Performance. ![]() |
![]() ![]() | Palipana, D., Trandafir, A., Mihaylov, B., & Proestos, G. (2021). Direct Evaluation of Shear Carrying Mechanisms in Reinforced Concrete Deep Beams. In Concrete Structures: New Trends for Eco-Efficiency and Performance. ![]() |