[en] Classification trees built with the Classification And Regression Tree algorithm were evaluated for modelling infrared spectroscopic data in order to discriminate between genuine and counterfeit drug samples and to classify counterfeit samples in different classes following the RIVM classification system.
Models were built for two data sets consisting of the Fourier Transform Infrared spectra, the Near Infrared spectra and the Raman spectra for genuine and counterfeit samples of respectively Viagra® and Cialis®.
Easy interpretable models were obtained for both models. The models were validated for their descriptive and predictive properties. The predictive properties were evaluated using both cross validation as an external validation set. The obtained models for both data sets showed a 100% correct classification for the discrimination between genuine and counterfeit samples and 83.3% and 100% correct classification for the counterfeit samples for the Viagra® and the Cialis® data set respectively.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.