The University of Liège wishes to use cookies or trackers to store and access your personal data, to perform audience measurement. Some cookies are necessary for the website to function. Cookie policy.
Duval, C., Lecomte, P. and Ovsienko, V.: Conformally equivariant quantization: existence and uniqueness, Ann. Inst. Fourier (Grenoble) 49(6) (1999), 1999-2029.
Duval, C. and Ovsienko, V. Yu.: Space of second-order linear differential operators as a module over the Lie algebra of vector fields, Advances in Math. 132 (1997), 316-333.
Fuks, D. B.: Cohomology of Infinite-Dimensional Lie Algebras, Contemp. Soviet Math., Consultants Bureau, New York, 1986.
Gargoubi, H.and Ovsienko, V. Yu.: Space of linear differential operators on the real line as a module over the Lie algebra of vector fields, Internat. Math. Res. Notices No. 5 (1996), 235-251.
Grozman, P. Ja.: Classification of bilinear invariant operators on tensor fields (in Russian), Funktsional. Anal. i Prilozhen. 14(2) (1980), 58-59.
Lecomte, P. B. A. and Ovsienko, V.: Projectively equivariant symbol calculus, Lett. Math. Phys. 49(3) (1999), 173-196.
Lecomte, P. B. A.: On the cohomology of sl(m + 1) acting on differential operators and sl(m + 1)-equivariant symbol, Indag. Math. NS 11(1) (2000), 95-114.
Lecomte, P. B. A.: Classification projective des espaces d'opérateurs différentiels agissant sur les densités, C.R. Acad. Sci. Paris Série 1 328 (1999), 287-290.
Lecomte, P. B. A., Mathonet, P. and Tousset, E.: Comparison of some modules of the Lie algebra of vector fields, Indag. Math. NS. 7(4) (1996), 461-471.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.