[en] Current theories of stellar evolution imply that the solar luminosity was 25-30% less than at present during early phases of the Earth's history. The response of the global annual climate to changes of the solar input is examined using the maximum entropy production (MEP) principle and a zonal energy balance model including ice-albedo feedback. It is shown that this formulation reproduces satisfactorily the present meridional heat flux and latitudinal temperature distributions. It is found that the model predicts that the efficiency of the meridional heat transport decreases for low values of the solar constant. Consequently, if the solar irradiance is lowered, a progressive development of the polar caps and a decrease of the global surface temperature are obtained without major irreversibility in the system. A comparison with a similar model including diffusive heat transport formalism shows that the value of the critical solar luminosity causing a global glaciation is decreased when the meridional heat fluxes are determined by the MEP principle.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
DELCOURT, D.
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Language :
English
Title :
THE MAXIMUM-ENTROPY PRODUCTION PRINCIPLE IN CLIMATE MODELS - APPLICATION TO THE FAINT YOUNG SUN PARADOX
Publication date :
1990
Journal title :
Quarterly Journal of the Royal Meteorological Society
Budyko M.I. (1969) The effect of solar radiation variations on the climate of the earth. Tellus 21:611-619.
Carissimo B.C., Oort A.H., Yonder Haar T.H. (1985) Estimating the meridional energy transports in the atmosphere and ocean. Journal of Physical Oceanography 15:82-91.
Crowley T.J. (1983) The geologic record of climatic change. Rev. Geophys. Space Phys. 21:828-877.
Dutton J.A. (1973) The global thermodynamics of atmospheric motion. Tellus 25:89-110.
Endal A.S., Schatten K.H. (1982) The faint young sun‐climate paradox: continental influences. Journal of Geophysical Research 87:7295-7302.
Frakes L.A. Climates throughout geologic time, Elsevier, New York; 1979.
Gérard J.C. (1989) Aeronomy and paleoclimate. Understanding climate changes. Geophysical Monograph Series , A. Berger, R. Dickinson, J. Kidson, American Geophysical Union, Washington; 52:139-148.
Gérard J.C., Francois L.M. (1988) A sensitivity study of the effects of solar luminosity changes on the Earth's global temperature. Ann. Geophys. 6:101-112.
Gilliland R.L. (1989) Solar evolution. Palaeogeogr., Palaeoclimatol., Palaeoecol. 75:35-56.
Gough D.O. (1981) Solar interior structure and luminosity variations. Solar Phys. 74:21-34.
Kasting J.F. (1989) Long‐term stability of the Earth's climate. Palaeogeogr., Palaeoclimatol., Palaeoecol. 75:83-95.
Lorenz E.N. (1960) Generation of available potential energy and the intensity of the general circulation. Dynamics of climate , R. L. Pfeffer, Pergamon Press; 86-92.
Marshall H.G., Walker J.C.G., Kuhn W. (1988) Long‐term climate change and the geochemical cycle of carbon. J. Geophys. Res. 93:791-801.
Nelder J.A., Mead R. (1965) A simplex method for function minimisation. The Computer Journal 7:308-313.
Newman M.J., Rood R.T. (1977) Implications of solar evolution of the Earth's early atmosphere. Science 198:1035-1037.
Nicolis G., Nicolis C. (1980) On the entropy balance of the earth‐atmosphere system. Q. J. R. Meteorol. Soc. 106:691-706.
North G.R. (1975) Theory of energy‐balance models. J. Atmos. Sci. 32:2033-2043.
North G.R., Cahalan R.F., Coakley J.A. (1981) Energy‐balance climate models. Rev. Geophys. Space Phys. 19:91-121.
Paltridge G.W. (1975) Global dynamics and climate—a system of minimum entropy exchange. Quarterly Journal of the Royal Meteorological Society 101:475-484.
(1978) The steady‐state format of global climate. Q. J. R. Meteorol. Soc. 104:927-945.
(1981) Thermodynamic dissipation and the global climate system. Q. J. R. Meteorol. Soc. 107:531-547.
Prigogine I. Etude thermodynamique des processus irréversibles, Desoer, Liège; 1947.
Sellers W.D. (1969) A global climatic model based on the energy balance of the earth‐atmosphere system. Journal of Applied Meteorology 8:392-400.
Wang W.C., Stone P.H. (1980) Effect of ice‐albedo feedback on global sensitivity in a one‐dimensional radiative‐convective climate model. J. Atmos. Sci. 37:545-552.