[en] The precise molecular mechanisms that determine the three-dimensional architectures of tissues remain largely unknown. Within tissues rich in extracellular matrix, collagen fibrils are frequently arranged in a tissue-specific manner, as in certain liquid crystals. For example, the continuous twist between fibrils in compact bone osteons resembles a cholesteric mesophase, while in tendon, the regular, planar undulation, or "crimp", is akin to a precholesteric mesophase. Such analogies suggest that liquid crystalline organisation plays a role in the determination of tissue form, but it is hard to see how insoluble fibrils could spontaneously and specifically rearrange in this way. Collagen molecules, in dilute acid solution, are known to form nematic, precholesteric and cholesteric phases, but the relevance to physiological assembly mechanisms is unclear. In vivo, fibrillar collagens are synthesised in soluble precursor form, procollagens, with terminal propeptide extensions. Here, we show, by polarized light microscopy of highly concentrated (5-30 mg/ml) viscous drops, that procollagen molecules in physiological buffer conditions can also develop long-range nematic and precholesteric liquid crystalline ordering extending over 100 microm(2) domains, while remaining in true solution. These observations suggest the novel concept that supra-fibrillar tissue architecture is determined by the ability of soluble precursor molecules to form liquid crystalline arrays, prior to fibril assembly.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Martin, Raquel; Université P et Marie Curie - Paris > Histophysique et Cytophysique
Farjanel, J.; Université Claude Bernard - Lyon 1 - UCLB > Institut de Biologie et Chimie des Proteines
Eichenberger, D.; Université Claude Bernard - Lyon 1 - UCLB > Institut de Biologie et Chimie des Proteines
Colige, Alain ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Laboratoire de biologie des tissus conjonctifs
Kessler, E.; Tel Aviv University > Sackler Faculty of Medicine Goldschleger Eye Res. Inst.
Hulmes, D. J.; Université Claude Bernard - Lyon 1 - UCLB > Institut de Biologie et Chimie des Proteines
Giraud-Guille, M. M.; Université P et Marie Curie - Paris > Histophysique et Cytophysique
Language :
English
Title :
Liquid crystalline ordering of procollagen as a determinant of three-dimensional extracellular matrix architecture.
Baer E., Cassidy J.J., Hiltner A. (1995) Hierarchical structure of collagen composite systems: Lessons from Biology., Biomimetics, Design and Processing of Materials (Sarikaya, M. and Aksay, I. A., eds), American Institute of Physics Press, New York; 13-34.
Besseau L., Giraud-Guille M.-M. (1995) Stabilization of cholesteric phases of collagen to ordered gelated matrices. J. Mol. Biol. 251:197-202.
Bouligand Y. (1972) Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4:189-217.
Choglay A.A., Purdom I.F., Hulmes D.J.S. (1993) Procollagen binding to sphingomyelin. J. Biol. Chem. 268:6107-6114.
Colige A., Beschin A., Samyn B., Goebe S.Y., Beeumen J., Nusgens B.V., Lapiere C.M. (1995) Characterization and partial amino acid sequencing of 107-kDa procollagen I N-proteinase purified by affinity chromatography on immobilized type XIV collagen. J. Biol. Chem. 270:16724-16730.
Coulombre A.J. (1965) Problems in corneal morphogenesis. Advan. Morphogen. 4:81.
Giraud M.M., Castanet J., Meunier F.J., Bouligand Y. (1978) The fibrous structure of coelacanth scales: A 'twisted plywood'. Tissue Cell 10:671-686.
Giraud-Guille M.-M. (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif. Tissue Int. 42:167-180.
Giraud-Guille M.-M. (1992) Liquid crystallinity in condensed type I collagen solutions. A clue to the packing of collagen in extracellular matrices. J. Mol. Biol. 224:861-873.
Giraud-Guille M.-M., Besseau L. (1998) Banded patterns in liquid crystalline phases of type I collagen: Relationship with crimp morphology in connective tissue architecture. Connect. Tissue Res. 37:183-193.
Gross J., Bruns R.R. (1984) Another look at fibrillogenesis., The Role of Extracellular Matrix in Development (Trelstad, R. L., ed.). Alan R. Liss Inc., New York; 479-512.
Hulmes D.J.S., Bruns R.R., Gross J. (1983) On the state of aggregation of newly secreted procollagen. Proc. Natl. Acad. Sci. USA 80:388-392.
Kadler K.E., Holmes D.F., Trotter J.A., Chapman J.A. (1996) Collagen fibril formulation. Biochem. J. 316:1-11.
Kessler E., Adar R. (1989) Type I procollagen C-proteinase from mouse fibroblasts. Eur. J. Biochem. 186:115-121.
Kessler E., Takahara K., Biniaminov L., Brusel M., Greenspan D.S. (1996) Bone morphogenetic protein-1: The type I procollagen C-proteinase. Science 271:360-362.
Knight D.P., Feng D., Stewart M., King E. (1993) Changes in macromolecular organization in collagen assemblies secretion in the nidamental gland and formation of the egg capsule wall in the dogfish Scyliorhinus canicula. Phil. Trans. Roy. Soc. Ser. B 341:419-436.
Livolant F. (1984) Cholesteric organization of DNA in vivo and in vitro. Eur. J. Cell Biol. 33:300-311.
Livolant F. (1987) Precholesteric liquid crystalline states of DNA. J. Physique 48:1051-1066.
Martin R., Farjanel J., Eichenberger D., Giraud-Guille M.M., Hulmes D.J.S. (2000) Large scale production of procollagen I from chick embryo tendon fibroblasts. Anal. Biochem. 277:276-278.
Mould A.P., Hulmes J.S., Holmes D.F., Cummings C., Sear C.H.J., Chapman J.A. (1990) D-periodic assemblies of type I procollagen. J. Mol. Biol. 211:581-594.
Neville A.C., Biology of Fibrous Composites, Cambridge University Press, Cambridge; 1993.
Prockop D.J., Hulmes D.J.S. (1994) Assembly of collagen fibrils de novo from soluble precursors: Polymerization and copolymerization of procollagen, pN-collagen, and mutated collagens., Extracellular Matrix Assembly and Structure (Yurchenco, P. D., Birk, D. E. and Mecham, R. P., eds), Academic Press, San Diego; 47-90.
Prockop D.J., Sieron A.L., Li S.-W. (1998) Procollagen N-proteinase and procollagen C-proteinase. Two unusual metalloproteinases that are essential for procollagen processing probably have important roles in development and cell signaling. Matrix Biol. 16:399-408.