standard Earth model; hydrostatic flattening; inertia coefficient
Abstract :
[en] Modern Earth models are constrained by an inertia coefficient y*=J(2)/H approximate to 0.3308 which leads to a so-called 'hydrostatic' flattening f(hyd) approximate to 1/299.9. The latter is in rather large disagreement with the observed flattening f approximate to 1/298.3. We show that a more satisfactory value of the inertia coefficient for constraining a standard Earth model is y approximate to 0.332, consistent with a hydrostatic flattening of about 1/298.6. The change of the value of the inertia coefficient from about 0.331 to about 0.332 significantly alters the density structure of the core, notably the density jump at the inner core boundary. It brings, as a by-produce, the hydrostatic values of J(2) and H to better agreement with the observed values than is presently thought, and most probably leads for the Slichter mode to a period of much longer than 5.42 h, which is the value computed for PREM.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Denis, Carlo
Rogister, Yves
Amalvict, Martine
Delire, Christine
Denis-Ibrahim, Aysel
Munhoven, Guy ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) - Pétrologie et géochimie endogènes
Language :
English
Title :
Hydrostatic flattening, core structure, and translational mode of the inner core
Publication date :
1997
Journal title :
Physics of the Earth and Planetary Interiors
ISSN :
0031-9201
Publisher :
Elsevier Science
Volume :
99
Issue :
3-4
Pages :
195-206
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Communauté française de Belgique : Commissariat Général aux Relations Internationales (CGRI), programme Tournesol
Alterman, Z., Jarosch, H. and Pekeris, C.L., 1959. Oscillations of the Earth. Proc. R. Soc. Lond., A252: 80-95.
Bullard, E.C., 1948. The figure of the Earth. Mon. Not. R. Astr. Soc., Geophys. Suppl., 5: 186-192.
Bullen, K.E., 1936. The variation of density and the ellipticities of strata of equal density within the Earth. Mon. Not. R. Astr. Soc., Geophys. Suppl., 3: 395-401.
Bullen, K.E., 1946. A hypothesis on compressibility at pressures of the order of a million atmospheres. Nature, 157: 405.
Bullen, K.E., 1949. Compressibility-pressure hypothesis and the Earth's interior. Mon. Not. R. Astr. Soc., Geophys. Suppl., 5: 355-368.
Bullen, K.E., 1968. Dependence of compressibility and compression on chemical composition in finite-strain theory. Phys. Earth Planet. Inter., 1: 297-301.
Bullen, K.E., 1975. The Earth's Density. Chapman and Hall, London.
Bullen, K.E., 1976. Note on incompressibility-pressure gradients in the Earth's core. Geophys. J. R. Astr. Soc., 44: 717-718.
Bullen, K.E. and Bolt, B.A., 1987. An Introduction to the Theory of Seismology. 4th edn., Cambridge University Press.
Crossley, D.J., 1975. Core undertones with rotation. Geophys. J. R. Astr. Soc., 42: 477-488.
Crossley, D.J. and Rochester, M.G., 1980. Simple core undertones. Geophys. J. R. Astr. Soc., 60: 129-161.
Crossley, D.J., Rochester, M.G. and Peng, Z.R., 1992. Slichter modes and Love numbers. Geophys. Res. Lett., 19: 1679-1682.
Denis, C., 1971. On free periods of the Earth above one hour. In: J. Coulomb and M. Caputo (Editors), Mantle and Core in Planetary Physics. Academic Press, New York, pp. 275-277.
Denis, C., 1974. Oscillations de configurations sphériques autogravitantes et applications à la Terre. Thèse de doctorat. Université de Liège.
Denis, C., 1975. Effect of rigidity on non-radial oscillations. Mém. Soc. Roy. Sc. Liège (6e Sér.), 8: 253-257.
Denis, C., 1983. Inertia coefficient considerations and the structure of Jovian planets. Celestial Mech., 31: 81-94.
Denis, C., 1986. On the change of kinetical parameters of the Earth during geological times. Geophys. J. R. Astr. Soc., 87: 559-568.
Denis, C., 1989. The hydrostatic figure of the Earth. In: R. Teisseyre (Editor), Physics and Evolution of the Earth's Interior, volume 4: Gravity and Low-Frequency Geodynamics. PWN, Warszawa and Elsevier, Amsterdam, pp. 111-186.
Denis, C., 1993. Global deformations and evolution of the Earth. Acta Geod. Geoph. Mont. Hung., 28: 15-131.
Denis, C. and Ibrahim, A., 1981. On a self-consistent representation of Earth models, with an application to the computing of internal flattening. Bull. Geod., 55: 179-195.
Denis, C. and Rogister, Y., 1994. Déformations globales et modèles de Terre. In: N. Capitaine (Editor), Actes des Journées 1991 'Systèmes de référence spatio-temporels'. Observatoire de Paris, pp. 213-218.
Denis, C., Denis-Karafistan, A.I. and Delire, C., 1991. Sur un modèle de référence terrestre commun à la géodésie et à la géophysique. In: N. Capitaine (Editor), Actes des Journées 1991 'Systèmes de référence spatio-temporels'. Observatoire de Paris, pp. 116-121.
Denis, C., Amalvict, M., Rogister, Y. and Tomecka-Suchoń, S., 1996a. Methods for computing the internal flattening, with applications to the Earth's structure and geodynamics. Geophys. J. Int., submitted.
Denis, C., Munhoven, G., Rogister, Y. and Tomecka-Suchoń, S., 1996b. On the mechanical spectra of self-gravitating fluid spherical shells and the validity of the subseismic wave equation. Phys. Earth Planet. Inter., in preparation.
Gilbert, F. and Dziewonski, A.M., 1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Phil. Trans. R. Soc. Lond., A278: 187-269.
Henriksen, S.W., 1960. The hydrostatic flattening of the Earth. Ann. Int. Geophys. Year, 12: 197-198.
Hinderer, J. and Crossley, D., 1993. Core dynamics and surface gravity changes. In: J.-L. LeMouël, D.E. Smylie and T. Herring (Editors), Dynamics of Earth's Deep Interior and Earth Rotation. AGU Geophysical Monograph 72, IUGG Volume 12, pp. 1-16.
Hinderer, J., Crossley, D. and Jensen, O., 1995. A search for the Slichter triplet in superconducting gravimeter data. Phys. Earth Planet. Inter., 90: 183-195.
Jensen, O., Hinderer, J. and Crossley, D., 1995. Noise limitations in the core-mode band of superconducting gravimeter data. Phys. Earth Planet. Inter., 90: 169-181.
Knopoff, L., 1971. An aversion to inversion. In: J. Coulomb and M. Caputo (Editors), Mantle and Core in Planetary Physics. Int. School Phys. "Enrico Fermi", Course 50. Academic Press, New York, pp. 134-145.
Lapwood, E.R. and Usami, T., 1981. Free Oscillations of the Earth. Cambridge University Press.
Ledoux, P., 1949. Contribution à l'étude de la structure interne des étoiles et de leur stabilité. Mém. Soc. Roy. Sci. Liège, 9: 1-294.
LeMouël, J.-L., Poirier, J.-P. and Assoumani, M., 1994. Sur le refroidissement du noyau terrestre. C.R. Acad. Sci. Paris, (Série II), 319: 1497-1501.
Mathews, P.M., Buffett, B.A., Herring, T.A. and Shapiro, I.I., 1991. Forced nutations of the Earth: influence of inner core dynamics. 1. Theory. J. Geophys. Res., B96: 8219-8242.
Moritz, H., 1990. The Figure of the Earth. Wichmann Verlag, Karlsruhe.
Okal, E.A., 1978. A physical classification of the Earth's spheroidal modes. J. Phys. Earth, 26: 75-103.
O'Keefe, J.A., 1960. Determination of the Earth's gravitational field. In: H. Kallmann Bijl (Editor), Space Research. Proc. First Int. Space Sci. Symp., Nice. Vol. 1, North-Holland, Amsterdam, pp. 448-457.
Pekeris, C.L. and Accad, Y., 1972. Dynamics of the liquid core of the Earth. Phil. Trans. R. Soc. Lond., A273: 237-260.
Radau, R., 1885. Remarques sur la théorie de la figure de la Terre. Bull. Astron., 2: 157-161.
Schwarzschild, K., 1906. Über das Gleichgewicht der Sonnenatmosphäre. Nachr. Kön. Ges. Wiss. Göttingen, Math.-Phys. Kl., 195: 41-53.
Slichter, L.B., 1961. The fundamental free mode of the Earth's inner core. Proc. Nat. Acad. Sci. Wash., 47: 186-190.
Smylie, D.E., 1992. The inner core translational triplet and the density near the Earth's center. Science, 255: 1678-1682.
Smylie, D.E. and Jiang, X., 1993a. Core oscillations and their detection in superconducting gravimeter records. J. Geomag. Geoelectr., 45: 1347-1369.
Smylie, D.E. and Jiang, X., 1993b. Numerical calculation of modes of oscillation of the Earth's core. In: J.-L. LeMouël, D.E. Smylie and T. Herring (Editors), Dynamics of Earth's Deep Interior and Earth Rotation. AGU Geophysical Monograph 72, IUGG Volume 12, pp. 81-89.
Smylie, D.E. and Rochester, M.G., 1981. Compressibility, core dynamics and the subseismic wave equation. Phys. Earth Planet. Inter., 24: 308-319.
Smylie, D.E., Hinderer, J., Richter, B. and Ducarme, B., 1994. The product spectra of gravity and barometric pressure in Europe. Phys. Earth Planet. Inter., 80: 135-157.
Wahr, J.M., 1981. The forced nutations of an elliptical, rotating, elastic and oceanless Earth. Geophys. J. R. Astr. Soc., 64: 705-727.
Widmer, R., 1991. The large-scale structure of the deep Earth as constrained by free oscillation observations. Ph.D. Thesis, UCSD, Scripps Institution of Oceanography, San Diego.