atmopheric CO2; glacial-interglacial; continental weathering; carbon cycle; model
Abstract :
[en] An 11-box model of the oceanic carbon cycle including sedimentary processes is used to explore the role chemical weathering of continental silicate rocks might play in driving atmospheric CO2 levels on glacial-interglacial timescales. Histories for the consumption of CO2 by silicate rock weathering processes are derived from the marine Ge/Si record. Taking the major uncertainties in the knowledge of the Ge and Si cycles into account, several histories for the evolution of the riverine dissolved silica fluxes are calculated from this record. The investigation of the systematics between riverine dissolved silica and bicarbonate fluxes under different weathering regimes leads us to the tentative conclusion that although there is no correlation between dissolved silica and total bicarbonate concentrations in the major rivers, there may exist a negative correlation between weathering intensity and the ratio of dissolved silica to bicarbonate derived from silicate weathering alone. With this correlation as a working hypothesis, it is possible to interpret the dissolved silica fluxes in terms of equivalent CO2 consumption rates. The calculated histories indicate that glacial rates of CO2 consumption by chemical silicate rock weathering could have been twice, and possibly up to 3.5 times, as high as they are today. When used to force the carbon cycle model, they are responsible for glacial-interglacial pCO2 variations in the atmosphere of typically 50–60 ppm and up to 95–110 ppm. These variations are superimposed to a basic oscillation of 60 ppm generated by the model, mainly in response to coral reef buildup and erosion processes. The total pCO2 signal has an amplitude of about 80–90 ppm and up to 125–135 ppm. Although these large amplitudes indicate that silicate weathering processes should be taken into account when studying glacial-interglacial changes of CO2 in the atmosphere, it also raises new problems, such as too high CO2 levels during the period from 110–70 kyr B.P., requiring further study.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Munhoven, Guy ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) - Pétrologie et géochimie endogènes
Francois, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) - Climatologie
Language :
English
Title :
Glacial-interglacial variability of atmospheric CO2 due to changing continental silicate rock weathering: A model study
Publication date :
1996
Journal title :
Journal of Geophysical Research
ISSN :
0148-0227
eISSN :
2156-2202
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Volume :
101
Issue :
D16
Pages :
21423-21437
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique DG RDT - Commission Européenne. Direction Générale de la Recherche et de l'Innovation BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adams, J. M., H. Faure, L. Faure-Denard, J. M. McGlade, and F. I. Woodward, Increases in the terrestrial carbon storage from the Last Glacial Maximum to the present, Nature, 348, 711-714, 1990.
Amiotte Suchet, P., Cycle du carbone, érosion chimique des continents et transferts vers les océans, Sci. Géol. Mém., 97, 1-156, 1995.
Archer, D., and E. Maier-Reimer, Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration, Nature, 367, 260-263, 1994.
Barnola, J.-M., D. Raynaud, Y. S. Korotkevich, and C. Lorius, Vostok ice core provides 160,000-year record of atmospheric CO2, Nature, 329, 408-414, 1987.
Berger, W. H., Increase of carbon dioxide in the atmosphere during deglaciation: The coral reef hypothesis, Naturwissenschaften, 69, 87-88, 1982.
Berner, E. K., and R. A. Berner, The Global Water Cycle, Prentice-Hall, Englewood Cliffs, N. J., 1987.
Berner, R. A., Atmospheric carbon dioxide levels over Phanerozoic time, Science, 249, 1382-1386, 1990.
Berner, R. A., A model for atmospheric CO2 over Phanerozoic time, Am. J. Sci., 291, 339-376, 1991.
Berner, R. A., A. C. Lasaga, and R. M. Garrels, The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641-683, 1983.
Bluth, G. J. S., and L. R. Kump, Phanerozoic paleogeology, Am. J. Sci., 291, 284-308, 1991.
Bluth, G. J. S., and L. R. Kump, Lithologic and climatologic controls of river chemistry, Geochim. Cosmochim. Acta, 58, 2341-2359, 1994,
Broecker, W. S., and T.-H. Peng, Tracers in the Sea, Lamont-Doherty Earth Obs. of Columbia Univ., Palisades, N. Y., 1982.
Chamley, H., Clay Sedimentology, 623 pp., Springer-Verlag, New York, 1989
DeMaster, D. J., The supply and accumulation of silica in the marine environment, Geochim. Cosmochim. Acta, 45, 1715-1732, 1981.
Dia, A. N., A. S. Cohen, R. K. O'Nions, and N. J. Shackleton, Seawater Sr isotope variation over the past 300 kyr and influence of global climate cycles, Nature, 356, 786-788, 1992.
Farrell, J. W., and W. L. Prell, Climatic change and CaCO3 preservation: An 800,000 year bathymetric reconstruction from the Central Equatorial Pacific Ocean, Paleoceanography, 4(4), 447-466, 1989.
François, L. M., and J. C. G. Walker, Modelling the Phanerozoic carbon cycle and climate: Constraints from the 87Sr/86Sr isotopic ratio of seawater, Am. J. Sci., 292, 81-135, 1992.
François, L. M., J. C. G. Walker, and B. N. Opdyke, The history of global weathering and the chemical evolution of the ocean-atmosphere system, in Evolution of the Earth and Planets, edited by E. Takahashi, R. Jeanloz, and D. C. Rubie, Geophys. Monogr. Ser., vol. 74, pp. 143-159, AGU, Washington, D. C., 1993.
Froelich, P. N., Paleogeochemical cycling of germanium and silica: The present is key to the past (& vice versa), Eos Trans. AGU, 76(46), Meet. Suppl., F304, 1995.
Froelich, P. N., R. A. Mortlock, and A. Shemesh, Inorganic germanium and silica in the Indian Ocean: Biological fractionation during (Ge/Si)opal formation, Global Biogeochem. Cycles, 3(1), 79-88, 1989.
Froelich, P. N., V. Blanc, R. A. Mortlock, S. N. Chillrud, W. Dunstan, A. Udomkit, and T. Peng, River fluxes of dissolved silica to the ocean were higher during glacials: Ge/Si in diatoms, rivers, and oceans, Paleoceanography, 7(6), 739-767, 1992.
Gibbs, M. T., and L. R. Kump, Global chemical erosion during the last glacial maximum and the present: Sensitivity to changes in lithology and hydrology, Paleoceanography, 9(4), 529-543, 1994.
Goddéris, Y., and L. M. François, The Cenozoic evolution of the strontium and carbon cycles: Relative importance of continental erosion and mantle exchanges, Chem. Geol., 186(2), 169-190, 1995.
Henderson, G. M., D. J. Martel, R. K. O'Nions, and N. J. Shackleton, Evolution of seawater 87Sr/86Sr over the last 400 ka: The absence of glacial/interglacial cycles, Earth Planet. Sci. Lett., 128, 643-651, 1994.
Holland, H. D., The Chemistry of the Atmosphere and the Oceans, Wiley-Interscience, New York, 1978.
Jouzel, J., et al., Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period, Nature, 364, 407-412, 1993.
Keir, R. S., The dissolution kinetics of biogenic calcium carbonates in seawater, Geochim. Cosmochim. Acta, 44, 241-252, 1980.
Keir, R. S., and W. H. Berger, Atmospheric CO2 content in the last 120,000 years: The phosphate-extraction model, J. Geophys. Res., 88(C10), 6027-6038, 1983.
Labeyrie, L. D., J.-C. Duplessy, and P. L. Blanc, Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years, Nature, 327, 477-482, 1987.
Lisitzin, A. P., The silica cycle during the last ice age, Palaeogeogr. Palaeoclimatol. Palaeoecol., 50, 241-270, 1985.
Maier-Reimer, E., U. Mikolajewicz, and K. Hasselmann, On the sensitivity of the global ocean circulation to changes in the surface heat flux forcing, MPI Rep. 68, Max-Planck-Inst. für Meteorol., Hamburg, Germany, 1991.
Maier-Reimer, E., U. Mikolajewicz, and K. Hasselmann, Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing, J. Phys. Oceanogr., 23, 731-757, 1993.
Meybeck, M., Concentrations des eaux fluviales en éléments majeurs et apports en solution aux océans, Rev. Géol. Dyn. Géogr. Phys., 21(3), 215-246, 1979.
Meybeck, M., Composition chimique des ruisseaux non pollués de France, Sci. Géol. Bull., 39(1), 3-77, 1986.
Meybeck, M., Global chemical weathering of surficial rocks estimated from river dissolved loads, Am. J. Sci., 287, 401-428, 1987.
Milliman, J. D., Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state, Global Biogeochem. Cycles, 7(4), 927-957, 1993.
Morse, J. W., and F. T. Mackenzie, Geochemistry of Sedimentary Carbonates, Dev. in Sedimentol, vol. 48, Elsevier, New York, 1990.
Mortlock, R. A., and P. N. Froelich, Continental weathering of germanium: Ge/Si in the global river discharge, Geochim. Cosmochim. Acta, 51, 2075-2082, 1987.
Mortlock, R. A., C. D. Charles, P. N. Froelich, M. A. Zibello, J. Saltzman, J. D. Hays, and L. H. Burkle, Evidence for lower productivity in the Antarctic Ocean during the last glaciation, Nature, 351, 220-223, 1991.
Mortlock, R. A., P. N. Froelich, R. A. Feely, G. J. Massoth, D. A. Butterfield, and J. E. Lupton, Silica and germanium in Pacific Ocean hydrothermal vents and plumes, Earth Planet. Sci. Lett., 119, 365-378, 1993.
Munhoven, G., and L. M. François, Glacial-interglacial changes in continental weathering: Possible implications for atmospheric CO2, in Carbon Cycling in the Glaciall Ocean: Constraints on the Ocean's Role in Global Change, edited by R. Zahn, T. F. Pedersen, M. A. Kaminski, and L. Labeyrie, NATO ASI Ser., vol. 117, pp. 39-58, Springer-Verlag, New York, 1994.
Murnane, R. J., and R. F. Stallard, Germanium/silicon fractionation during biogenic opal formation, Paleoceanography, 5(4), 461-469, 1988.
Murnane, R. J., and R. F. Stallard, Germanium and silicon in rivers of the Orinoco drainage basin, Nature, 344, 749-752, 1990.
Opdyke, B. N., and J. C. G. Walker, Return of the coral reef hypothesis: Basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2, Geology, 20, 733-736, 1992.
Opdyke, B. N., and B. H. Wilkinson, Surface area control of shallow cratonic to deep marine carbonate accumulation, Paleoceanography, 3(6), 685-703, 1988.
Pedro, G., Distribution des principaux types d'altération chimique à la surface du globe, Rev. Géogr. Phys. Géol. Dyn. (2), 10(5), 457-470, 1968.
Probst, J.-L., Géochimie et hydrologie des l'érosion continentale, mécanismes, bilan global actuel et fluctuations au cours des 500 derniers millions d'années, Sci. Géol. Mém., 94, 1-161, 1992.
Probst, J.-L., R.-R. NKounkou, G. Krempp, J.-P. Bricquet, J.-P. Thiébaux, and J.-C. Olivry, Dissolved major elements exported by the Congo and the Ubangi rivers during the period 1987-1989, J. Hydrol., 135, 237-257, 1992.
Probst, J.-L., J. Mortatti, and Y. Tardy, Carbon river fluxes and weathering CO2 consumption in the Congo and the Amazon river basins, Appl. Geochem., 9, 1-13, 1994.
Sanyal, A., N. G. Hemming, G. H. Hanson, and W. S. Broecker, Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera, Nature, 373, 234-236, 1995.
Sharp, M., M. Tranter, G. H. Brown, and M. Skidmore, Rates of chemical denudation and CO2 drawdown in a glacier-covered alpine catchment, Geology, 23, 61-64, 1995.
Stallard, R. F., Major element geochemistry of the Amazon River system, Ph.D. thesis, Mass. Inst. of Technol.-Woods Hole Oceanogr. Inst. Joint Program in Oceanogr., Woods Hole, Mass., 1980.
Stallard, R. F., and J. M. Edmond, Geochemistry of the Amazon, 3, Weathering chemistry and limits to dissolved inputs, J. Geophys. Res., 92(C8), 8293-8302, 1987.
Tréguer, P., D. M. Nelson, A. J. van Bennekom, D. J. De-Master, A. Leynaert, and B. Quéguiner, The silica balance in the world ocean, Science, 268, 375-379, 1995.
Van Campo, E., J. Guiot, and C. Peng, A data-based re-appraisal of the terrestrial carbon budget at the last glacial maximum, Global Planet. Change, 8, 189-201, 1993.
Walker, J. C. G., and B. N. Opdyke, Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments, Paleoceanography, 10(3), 415-427, 1995.
Walker, J. C. G., P. B. Hays, and J. F. Kasting, A negative feedback mechanism for the long-term stabilization of Earth's surface temperature, J. Geophys. Res., 86(C10), 9776-9782, 1981.
Westernhausen, L., M. Sarnthein, U. Struck, H. Erlenkeuser, and J. Poynter, pCO2 variations of equatorial surface water over the last 330,000 years: The δ13C record of organic carbon, in Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change, edited by R. Zahn, T. F. Pedersen, M. A. Kaminski, and L. Labeyrie, NATO ASI Ser., vol. 117, pp. 367-382, Springer-Verlag, New York, 1994.
Wolery, T. J., and N. H. Sleep, Interaction of geochemical cycles with the mantle, in Chemical Cycles in the Evolution of the Earth, edited by C. B. Gregor, R. M. Garrels, F. T. Mackenzie, and J. B. Maynard, chap. 3, pp. 77-103, John Wiley, New York, 1988.
Wollast, R., The relative importance of biomineralization and dissolution of CaCO3 in the global carbon cycle, in Past and Present Biomineralization Processes. Considerations about the Carbonate Cycle, edited by F. Doumenge, Bulletin de l'Institut Océanographique, spéc. 13, pp. 13-35, Musée Océanogr., Monaco, 1994.
Wollast, R., and F. T. Mackenzie, Global cycle of silica, in Silicon Geochemistry, edited by S. Aston, pp. 39-76, Academic, San Diego, Calif., 1982.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.