Abbatt, J.P.D.D., Thomas, J.L., Abrahamsson, K., Boxe, C., Granfors, A., Jones, A.E., et al. (2012) Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions. Atmospheric Chemistry and Physics, 12(14), Article 14, https://doi.org/10.5194/acp-126237-2012.
Abrahamsson, K., Granfors, A., Ahnoff, M., Cuevas, C.A. & Saiz-Lopez, A. (2018) Organic bromine compounds produced in sea ice in Antarctic winter. Nature Communications, 9(1), 5291, https://doi.org/10.1038/s41467018-07062-8.
Abrahamsson, K., Lorén, A., Wulff, A. & Wängberg, S.-Å. (2004) Air–sea exchange of halocarbons: the influence of diurnal and regional variations and distribution of pigments. Deep Sea Research Part II: Topical Studies in Oceanography, 51(22–24), Article 22–24, https://doi.org/10.1016/j.dsr2.2004.09.005
Ahn, J., Headly, M., Wahlen, M., Brook, E.J., Mayewski, P.A. & Taylor, K.C. (2008) CO2 diffusion in polar ice: observations from naturally formed CO2 spikes in the Siple Dome (Antarctica) ice core. Journal of Glaciology, 54(187), 685–695, https://doi.org/10.3189/002214308786570764.
Attard, K.M., Søgaard, D.H., Piontek, J., Lange, B.A., Katlein, C., Sørensen, H.L., et al. (2018) Oxygen fluxes beneath Arctic land–fast ice and pack ice: towards estimates of ice productivity. Polar Biology, 0123456789, Article 0123456789, https://doi.org/10.1007/s00300-018-2350-1.
Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J., Foken, T., et al. (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. In: Advances in Ecological Research Advances in Ecological Research (vol. 30, pp. 113–175). Academic Press.
Bennington, K.O. (1963) Some crystal growth features of sea ice. Journal of Glaciology, 4(36), Article 36.
Bereiter, B., Fischer, H., Schwander, J. & Stocker, T.F. (2014) Diffusive equilibration of N2, O2 and CO2 mixing ratios in a 1.5-million-yearsold ice core. The Cryosphere, 8(1), 245–256, https://doi.org/10.5194/tc-8-245-2014.
Bereiter, B., Stocker, T.F. & Fischer, H. (2013) A centrifugal ice microtome for measurements of atmospheric CO2 on air trapped in polar ice cores. Atmospheric Measurement Techniques, 6(2), Article 2, https://doi.org/10.5194/amt-6251-2013.
Bižić, M., Klintzsch, T., Ionescu, D., Hindiyeh, M.Y., Günthel, M., Muro-Pastor, A.M., et al. (2020) Aquatic and terrestrial cyanobacteria produce methane. Science Advances, 6(3), eaax5343. https://doi.org/10.1126/sciadv.aax5343.
Broecker, W.S. & Peng, T.H. (1974) Gas exchange rates between air and sea. Tellus, 26(1–2), Article 1–2.
Brown, K.A. (2014) A Multi-Tracer Study of the Role of Sea Ice in the Arctic Ocean Carbon Cycle (Numéro April). The University of British Columbia.
Brown, K.A., Miller, L.A., Davelaar, M., Francois, R. & Tortell, P.D. (2014) Over-determination of the carbonate system in natural seaice brine and assessment of carbonic acid dissociation constants under low temperature, high salinity conditions. Marine Chemistry, 165(January 2016), Article January 2016, https://doi.org/10.1016/j.marchem.2014.07.005.
Carnat, G., Zhou, J., Papakyriakou, T., Delille, B., Goossens, T., Haskell, T., et al. (2014) Physical and biological controls on DMS,P dynamics in ice shelf-influenced fast ice during a winterspring and a spring-summer transitions. Journal of Geophysical Research: Oceans, 119(5), Article 5, https://doi.org/10.1002/2013JC009381.
Cole, D.M., Eicken, H., Frey, K. & Shapiro, L.H. (2004) Observations of banding in first-year Arctic sea ice. Journal of Geophysical Research C: Oceans, 109(8), Article 8, https://doi.org/10.1029/2003JC001993.
Cox, G.F.N. & Weeks, W.F. (1975) Brine Drainage and Initial Salt Entrapment in Sodium Chloride Ice: Vol. CRREL Rese. Cold Regions Research and Engineering Laboratory.
Cox, G.F.N. & Weeks, W.F. (1983) Equations for determining the gas and brine volumes in seaice samples. Journal of Glaciology, 29(102), 306–316, https://doi.org/10.1017/S0022143000008364.
Crabeck, O., Delille, B., Rysgaard, S., Thomas, D.N., Geilfus, N.-X., Else, B., et al. (2014a). First “in situ” determination of gas transport coefficients (DO2, DAr, and DN2) from bulk gas concentration measurements (O2, N2, Ar) in natural sea ice. Journal of Geophysical Research: Oceans, 119(10), 6655–6668. https://doi.org/10.1002/2014JC009849.
Crabeck, O., Delille, B., Thomas, D.N., Geilfus, N.-X., Rysgaard, S. & Tison, J.-L. (2014b) CO2 and CH4 in sea ice from a subarctic fjord under influence of riverine input. Biogeosciences, 11(3), 4047–4083, https://doi.org/10.5194/bgd-11-4047-2014.
Crabeck, O., Galley, R., Delille, B., Else, B., Geilfus, N.-X., Lemes, M., et al. (2016) Imaging air volume fraction in sea ice using non-destructive X-ray tomography. The Cryosphere, 10(3), 1125–1145, https://doi.org/10.5194/tc-10-1125-2016.
Crabeck, O., Galley, R.J., Mercury, L., Delille, B., Tison, J.-L. & Rysgaard, S. (2019) Evidence of freezing pressure in sea ice discrete brine inclusions and its impact on aqueous-gaseous equilibrium. Journal of Geophysical Research: Oceans, 124(3), Article 3, https://doi.org/10.1029/2018JC014597.
Damm, E., Helmke, E., Thoms, S., Schauer, U., Nöthig, E., Bakker, K., et al. (2010) Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences, 7(3), Article 3, https://doi.org/10.5194/bg-7-1099-2010.
Damm, E., Rudels, B., Schauer, U., Mau, S. & Dieckmann, G.S. (2015) Methane excess in Arctic surface water – triggered by sea ice formation and melting. Scientific Reports, 5(1), Article 1, https://doi.org/10.1038/srep16179.
Damm, E., Schauer, U., Rudels, B. & Haas, C. (2007) Excess of bottom-released methane in an Arctic shelf sea polynya in winter. Continental Shelf Research, 27(12), Article 12, https://doi.org/10.1016/j.csr.2007.02.003.
Delille, B., Jourdain, B., Borges, A.V., Tison, J.-L. & Delille, D. (2007) Biogas (CO2, O2, dimethylsulfide) dynamics in spring Antarctic fast ice. Limnology and Oceanography, 52(4), 1367–1379, https://doi.org/10.4319/lo.2007.52.4.1367.
Delille, B., Vancoppenolle, M., Geilfus, N.-X., Tilbrook, B., Lannuzel, D., Schoemann, V., et al. (2014b). Southern Ocean CO2 sink: the contribution of the sea ice. Journal of Geophysical Research: Oceans, 119(9), Article 9, https://doi.org/10.1002/2014JC009941.
Dieckmann, G.S., Nehrke, G., Papadimitriou, S., Göttlicher, J., Steininger, R., Kennedy, H., et al. (2008) Calcium carbonate as ikaite crystals in Antarctic sea ice. Geophysical Research Letters. 35(8), https://doi.org/10.1029/2008GL033540.
Dieckmann, G.S., Nehrke, G., Uhlig, C., Göttlicher, J., Gerland, S., Granskog, M.A., et al. (2010) Brief communication: ikaite (CaCO3·6H2O) discovered in Arctic sea ice. The Cryosphere, 4(2), 227–230, https://doi.org/10.1029/2008GL033540.
Eicken, H. (1992) Salinity profiles of Antarctic sea ice: field data and model results. Journal of Geophysical Research: Oceans (1978–97(C10), Article C10, https://doi.org/10.1029/92JC01588.
Eicken, H., Fischer, H. & Lemke, P. (1995) Effects of the snow cover on Antarctic sea ice and potential modulation of its response to climate change. Annals of Glaciology, 21, 369–376.
Else, B.G.T.G.T., Rysgaard, S., Attard, K., Campbell, K., Crabeck, O., Galley, R.J.J., et al. (2015) Under-ice eddy covariance flux measurements of heat, salt, momentum, and dissolved oxygen in an artificial sea ice pool. Cold Regions Science and Technology, 119, 158–169, https://doi.org/10.1016/j.coldregions.2015.06.018.
Feltham, D.L., Untersteiner, N., Wettlaufer, J.S. & Worster, M.G. (2006) Sea ice is a mushy layer. Geophysical Research Letters, 33(14), Article 14, https://doi.org/10.1029/2006GL026290.
Fischer, M., Thomas, D.N., Krell, A., Nehrke, G., Göttlicher, J., Norman, L., et al. (2013) Quantification of ikaite in Antarctic sea ice. Antarctic Science, 25(3), Article 3, https://doi.org/10.1017/S0954102012001150.
Flückiger, J., Blunier, T., Stauffer, B., Chappellaz, J., Spahni, R., Kawamura, K., et al. (2004) N2O and CH4 variations during the last glacial epoch: insight into global processes. Global Biogeochemical Cycles, 18(1), https://doi.org/10.1029/2003GB002122.
Fons, S., Kurtz, N. & Bagnardi, M. (2023) A decade-plus of Antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform fitting. The Cryosphere, 17(6), 2487–2508, https://doi.org/10.5194/tc-17-2487-2023.
Fransson, A., Chierici, M., Miller, L.A., Carnat, G., Shadwick, E., Thomas, H., et al. (2013) Impact of sea-ice processes on the carbonate system and ocean acidification at the icewater interface of the Amundsen Gulf, Arctic Ocean. Journal of Geophysical Research: Oceans, 118(12), Article 12, https://doi.org/10.1002/2013JC009164.
Frantz, C.M., Light, B., Farley, S.M., Carpenter, S., Lieblappen, R., Courville, Z., et al. (2019) Physical and optical characteristics of heavily melted “rotten” Arctic sea ice. The Cryosphere, 13(3), 775–793, https://doi.org/10.5194/tc-13-775-2019.
Garcia, H.E. & Gordon, L.I. (1992) Oxygen solubility in seawater: better fitting equations. Limnology and Oceanography, 37(6), Article 6.
Geilfus, N.-X., Carnat, G., Dieckmann, G.S., Halden, N., Nehrke, G., Papakyriakou, T., et al. (2013) First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth. Journal of Geophysical Research: Oceans, 118(1), Article 1, https://doi.org/10.1029/2012JC007980.
Geilfus, N.-X., Carnat, G., Papakyriakou, T., Tison, J.-L., Else, B., Thomas, H., et al. (2012a) Dynamics of pCO2 and related air-ice CO2 fluxes in the Arctic coastal zone (Amundsen Gulf, Beaufort Sea). Journal of Geophysical Research: Oceans, 117(C9), 1–15, https://doi.org/10.1029/2011JC007118.
Geilfus, N.-X., Delille, B., Verbeke, V. & Tison, J.L. (2012b). Towards a method for high vertical resolution measurements of the partial pressure of CO2 within bulk sea ice. Journal of Glaciology, 58(208), 287–300, https://doi.org/10.3189/2012JoG11J071.
Geilfus, N.-X., Galley, R.J., Else, B.G.T., Campbell, K., Papakyriakou, T., Crabeck, O., et al. (2016) Estimates of ikaite export from sea ice to the underlying seawater in a sea iceseawater mesocosm. Cryosphere, 10(5), Article 5, https://doi.org/10.5194/tc-10-2173-2016.
Geilfus, N.-X., Tison, J.-L., Ackley, S.F., Galley, R.J., Rysgaard, S., Miller, L.A., et al. (2014) Sea ice pCO2 dynamics and air–ice CO2 fluxes during the Sea Ice Mass Balance in the Antarctic (SIMBA) experiment–Bellingshausen Sea, Antarctica. The Cryosphere, 8(6), 239532407, https://doi.org/10.5194/tc-8-2395-2014.
Gilman, J.B., Burkhart, J.F., Lerner, B.M., Williams, E.J., Kuster, W.C., Goldan, P.D., et al. (2010) Ozone variability and halogen oxidation within the Arctic and sub-Arctic springtime boundary layer. Atmospheric Chemistry and Physics, 10(21), Article 21, https://doi.org/10.5194/acp-10-10223-2010.
Gleitz, M., Rutgers van der Loeff, M., Thomas, D.N., Dieckmann, G.S. & Millero, F.J. (1995) Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Marine Chemistry, 51, 81–91.
Glud, R.N., Rysgaard, S., Kuhl, M. & Kühl, M. (2002) A laboratory study on O-2 dynamics and photosynthesis in ice algal communities: quantification by microsensors, O-2 exchange rates, C-14 incubations and a PAM fluorometer. Aquatic Microbial Ecology, 27(3), Article 3, https://doi.org/10.3354/ame027301.
Glud, R.N., Rysgaard, S., Turner, G., McGinnis, D.F. & Leakey, R.J.G. (2014) Biological-and physical-induced oxygen dynamics in melting sea ice of the Fram Strait. Limnology and Oceanography, 59(4), Article 4, https://doi.org/10.4319/lo.2014.59.4.1097.
Golden, K.M.M., Ackley, S.F. & Lytle, V.I. (1998) The percolation phase transition in sea ice. Science, 282(December), Article December.
Gosink, T.A., Pearson, J.G. & Kelley, J.J. (1976) Gas movement through sea ice. Nature. https://doi.org/10.1038/263041a0.
Gourdal, M., Crabeck, O., Lizotte, M., Galindo, V., Gosselin, M., Babin, M., et al. (2019) Upward transport of bottom-ice dimethyl sulfide during advanced melting of arctic first-year sea ice. Elementa: Science of the Anthropocene, 7, 33, https://doi.org/10.1525/elementa.370.
Granfors, A. (2014) Biogenic Halocarbons in Polar Sea Ice: Vol. PhD Thesis. University of Gothenburg, hdl.handle.net/2077/35507.
Granfors, A., Ahnoff, M., Mills, M.M. & Abrahamsson, K. (2014) Organic iodine in Antarctic sea ice: a comparison between winter in the Weddell Sea and summer in the Amundsen Sea. Journal of Geophysical Research: Biogeosciences, https://doi.org/10.1002/2014JG002727.
Granfors, A., Andersson, M., Chierici, M., Fransson, A., Gårdfeldt, K., Torstensson, A., et al. (2013) Biogenic halocarbons in young Arctic sea ice and frost flowers. Marine Chemistry, 155(0), Article 0, https://doi.org/10.1016/j.marchem.2013.06.002.
Granfors, A., Karlsson, A., Mattsson, E., Smith, W.O. & Abrahamsson, K. (2013) Contribution of sea ice in the Southern Ocean to the cycling of volatile halogenated organic compounds. Geophysical Research Letters, 40(15), Article 15, https://doi.org/10.1002/grl.50777.
Grenfell, T.C. (1983) A theoretical model of the optical properties of sea ice in the visible and near infrared. Journal of Geophysical Research: Oceans, 88(C14), 9723–9735. https://doi.org/10.1029/JC088iC14p09723.
Grimm, R., Notz, D., Glud, R.N., Rysgaard, S. & Six, K.D. (2016) Assessment of the sea-ice carbon pump: insights from a threedimensional ocean-sea-ice-biogeochemical model (MPIOM/HAMOCC). Elementa: Science of the Anthropocene, 4(0), Article 0, https://doi.org/10.12952/journal.elementa.000136.
Hamme, R.C. & Emerson, S.R. (2004) The solubility of neon, nitrogen and argon in distilled water and seawater. Deep Sea Research Part I: Oceanographic Research Papers, 51(11), Article 11, https://doi.org/10.1016/j.dsr.2004.06.009.
Hansen, J., Thamdrup, B. & Jørgensen, B. (2000) Anoxic incubation of sediment in gas-tight plastic bags: a method for biogeochemical process studies. Marine Ecology Progress Series, 208, 273–282, https://doi.org/10.3354/meps208273.
He, X., Sun, L., Xie, Z., Huang, W., Long, N., Li, Z., et al. (2013) Sea ice in the Arctic Ocean: role of shielding and consumption of methane. Atmospheric Environment, 67(0), Article 0, https://doi.org/10.1016/j.atmosenv.2012.10.029
Higaki, S., Oya, Y. & Makide, Y. (2006) Emission of methane from stainless steel surface investigated by using tritium as a radioactive tracer. Chemistry Letters, 35(3), 292–293, https://doi.org/10.1246/cl.2006.292.
Hutchings, J.K., Heil, P., Lecomte, O., Stevens, R., Steer, A. & Lieser, J.L. (2015) Comparing methods of measuring sea-ice density in the East Antarctic. Annals of Glaciology, 56(69), 77–82, https://doi.org/10.3189/2015AoG69A814.
Ingolf Eide, L. & Martin, S. (1975) The formation of brine drainage features in young sea ice. Journal of Glaciology, 14(70), 137–154, https://doi.org/10.3189/S0022143000013460.
Jacobi, H.-W., Morin, S. & Bottenheim, J.W. (2010) Observation of widespread depletion of ozone in the springtime boundary layer of the central Arctic linked to mesoscale synoptic conditions. Journal of Geophysical Research, 115(D17), Article D17, https://doi.org/10.1029/2010JD013940.
Jacques, C., Sapart, C., Fripiat, F., Carnat, G., Zhou, J., Delille, B., et al. (2021) Sources and sinks of methane in sea ice: insights from stable isotopes. Elementa: Science of the Anthropocene, 9(1), Article 1, https://doi.org/10.1525/elmenta.2020.00167.
Kammann, C., Grünhage, L. & Jäger, H.J. (2001) A new sampling technique to monitor concentrations of CH4, N2O and CO2 in air at well-defined depths in soils with varied water potential. European Journal of Soil Science, 52(2), Article 2, https://doi.org/10.1046/j.1365-2389.2001.00380.x.
Karl, D.M., Beversdorf, L., Bjorkman, K.M., Church, M.J., Martinez, A., Delong, E.F., et al. (2008) Aerobic production of methane in the sea. Nature Geoscience, 1(7), Article 7, https://doi.org/10.1038/ngeo234.
Karsten, U., Kuck, K., Vogt, C., Kirst, G.O., Kiene, R.P., Visscher, P.T., et al. (1996) Dimethylsulphoniumpropionate production in phototrophic organisms and its physiological function as a cryoprotectant. In Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds, pp. 143–153. Plenum Press.
Killawee, J.A., Fairchild, I.J., Tison, J.-L., Janssens, L. & Lorrain, R. (1998) Segregation of solutes and gases in experimental freezing of dilute solutions : Implications for natural glacial systems. Geochimica Et Cosmochimica Acta, 62(23–24), 3637–3655.
Kitidis, V., Upstill-Goddard, R.C. & Anderson, L.G. (2010) Methane and nitrous oxide in surface water along the North-West Passage, Arctic Ocean. Marine Chemistry, 121(1–4), Article 1–4, https://doi.org/10.1016/j.marchem.2010.03.006.
Knight, C.A. (1962) Polygonization of aged sea ice. The Journal of Geology, 70(2), 240–246, https://doi.org/10.1086/626813.
König, D., Miller, L.A., Simpson, K.G. & Vagle, S. (2018) Carbon dynamics during the formation of sea ice at different growth rates. Frontiers in Earth Science, 6, 234, https://doi.org/10.3389/feart.2018.00234.
Kort, E.A., Wofsy, S.C., Daube, B.C., Diao, M., Elkins, J.W., Gao, R.S., et al. (2012) Atmospheric observations of Arctic Ocean methane emissions up to 82° north. Nature Geoscience, 5(5), Article 5, https://doi.org/10.1038/ngeo1452.
Kotovitch, M., Moreau, S., Zhou, J., Vancoppenolle, M., Dieckmann, G.S., Evers, K.-U., et al. (2016) Air-ice carbon pathways inferred from a sea ice tank experiment. Elementa: Science of the Anthropocene, 4(1), Article 1, https://doi.org/10.12952/journal.elementa.000112.
Kuhl, M., Glud, R.N., Borum, J., Roberts, R. & Rysgaard, S. (2001) Photosynthetic performance of surface-associated algae below sea ice as measured with a pulse-amplitudemodulated (PAM) fluorometer and O-2 microsensors. Marine Ecology-Progress Series, 223, 1–14.
Landais, A., Masson-Delmotte, V., Jouzel, J., Raynaud, D., Johnsen, S., Huber, C., et al. (2006) The glacial inception as recorded in the NorthGRIP Greenland ice core: timing, structure and associated abrupt temperature changes. Climate Dynamics, 26(2–3), 273–284, https://doi.org/10.1007/s00382-0050063-y.
Lenhart, K., Klintzsch, T., Langer, G., Nehrke, G., Bunge, M., Schnell, S., et al. (2016) Evidence for methane production by the marine algae Emiliania huxleyi. Biogeosciences, 13(10), 3163–3174, https://doi.org/10.5194/bg-13-3163-2016.
Light, B., Maykut, G.A. & Grenfell, T.C. (2003) Effects of temperature on the microstructure of first-year Arctic sea ice. Journal of Geophysical Research, 108(C2), Article C2, https://doi.org/10.1029/2001JC000887.
Lim, S.M., Moreau, S., Vancoppenolle, M., Deman, F., Roukaerts, A., Meiners, K.M., et al. (2019) Field observations and hysicalbiogeochemical modeling suggest low silicon affinity for Antarctic fast ice diatoms. Journal of Geophysical Research: Oceans, 124(11), Article 11, https://doi.org/10.1029/2018JC014458.
Lindberg, S.E., Brooks, S., Lin, C.J., Scott, K.J., Landis, M.S., Stevens, R.K., et al. (2002) Dynamic oxidation of gaseous mercury in the arctic troposphere at polar sunrise. Environmental Science and Technology, 36(865), Article 865, https://doi.org/10.1021/es0111941.
Lipenkov, V., Candaudap, F., Ravoire, J., Dulac, E. & Raynaud, D. (1995) A new device for the measurement of air content in polar ice. Journal of Glaciology, 41(138), 423–429, https://doi.org/10.3189/S0022143000016294.
Long, M.H., Koopmans, D., Berg, P., Rysgaard, S., Glud, R.N. & Søgaard, D.H. (2012) Oxygen exchange and ice melt measured at the ice-water interface by eddy correlation. Biogeosciences, 9(6), Article 6, https://doi.org/10.5194/bg-9-1957-2012.
Loose, B., McGillis, W.R., Schlosser, P., Perovich, D. & Takahashi, T. (2009) Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments. Geophysical Research Letters, 36(5), L05603, https://doi.org/10.1029/2008GL036318.
Loose, B., Miller, L.A., Elliott, S. & Papakyriakou, T.N. (2011) Sea ice biogeochemistry and material transport across the frozen interface. Oceanography, 24(3), Article 3, https://doi.org/10.5670/oceanog.2011.72.
Loose, B., Schlosser, P., Perovich, D., Ringelberg, D., Ho, D.T.T., Takahashi, T., et al. (2011) Gas diffusion through columnar laboratory sea ice: implications for mixed-layer ventilation of CO2 in the seasonal ice zone. Tellus B, 63(1), 23–39, https://doi.org/10.1111/j.1600-0889.2010.00506.x
Lorenson, T.D. & Kvenvolden, K.A. (1995) Methane in Coastal Sea Water, Sea Ice, and Bottom Sediments, Beaufort Sea, Alaska, pp. 95–70. US Geological Survey.
Marion, G.M., Mironenko, M.V. & Roberts, M.W. (2010) FREZCHEM: a geochemical model for cold aqueous solutions. Computers & Geosciences, 36(1), Article 1, https://doi.org/10.1016/j.cageo.2009.06.004.
Matsuo, S. & Miyake, Y. (1966) Gas composition in ice samples from Antarctica. Journal of Geophysical Research, 71(22), 5235–5241, https://doi.org/10.1029/JZ071i022p05235.
McMinn, A., Ashworth, C. & Ryan, K. (2000) In situ net primary productivity of an Antarctic fast ice bottom algal community. Aquatic Microbial Ecology, 21(2), Article 2, https://doi.org/10.3354/ame021177.
McMinn, A., Gradinger, R. & Nomura, D. (2009) Biogeochemical properties of sea ice. In: Field Techniques for Sea Ice Research (Eds. H. Eicken, R. Gradinger, M. Salganek, K. Shirasawa, D. Perovich & M. Lepparanta), pp. 259–282. University of Alaska Press.
Middleton, C.A., Gopalakrishnan, S.S., Berenstein, I., Knaepen, B., Tison, J.-L. & De Wit, A. (2022) Relative role of short interfacial fingers and long internally driven streamers in convective flows below growing sea ice. Physical Review Fluids, 7(4), 043503, https://doi.org/10.1103/PhysRevFluids.7.043503.
Miller, L.A., Carnat, G., Else, B.G.T., Sutherland, N. & Papakyriakou, T.N. (2011) Carbonate system evolution at the Arctic Ocean surface during autumn freeze-up. Journal of Geophysical Research: Oceans, 116(10), Article 10, https://doi.org/10.1029/2011JC007143.
Miller, L.A., Fripiat, F., Else, B.G.T., Bowman, J.S., Brown, K.A., Collins, R.E., et al. (2015) Methods for biogeochemical studies of sea ice: the state of the art, caveats, and recommendations. Elementa: Science of the Anthropocene, 3, 000038, https://doi.org/10.12952/journal.elementa.000038.
Mock, T., Dieckmann, G.S., Haas, C., Krell, A, Tison, J.-L., Belem, A.L., et al. (2002) Micro-optodes in sea ice: a new approach to investigate oxygen dynamics during sea ice formation. Aquatic Microbial Ecology, 29(3), 297–306, https://doi.org/10.3354/ame029297.
Mock, T., Kruse, M. & Dieckmann, G.S. (2003) A new microcosm to investigate oxygen dynamics at the sea ice water interface. Aquatic Microbial Ecology, 30, 197–205. https://doi.org/10.3354/ame030197.
Moreau, S., Kaartokallio, H., Vancoppenolle, M., Zhou, J., Kotovitch, M., Dieckmann, G.S., et al. (2015a) Assessing the O2 budget under sea ice: an experimental and modelling approach. Elementa: Science of the Anthropocene, 3(1), Article 1, https://doi.org/10.12952/journal.elementa.000080.
Moreau, S., Vancoppenolle, M., Bopp, L., Aumont, O., Madec, G., Delille, B., et al. (2016) Assessment of the sea-ice carbon pump: insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMOLIM-PISCES). Elementa: Science of the Anthropocene, 4(1), Article 1, https://doi.org/10.12952/journal.elementa.000122.
Moreau, S., Vancoppenolle, M., Delille, B., Tison, J.L., Zhou, J., Kotovitch, M., et al. (2015b). Drivers of inorganic carbon dynamics in first-year sea ice: a model study. Journal of Geophysical Research: Oceans, 120(1), 471–495, https://doi.org/10.1002/2014JC010388.
Moreau, S., Vancoppenolle, M., Zhou, J., Tison, J.-L., Delille, B. & Goosse, H. (2014) Modelling argon dynamics in first-year sea ice. Ocean Modelling, 73(0), Article 0, https://doi.org/10.1016/j.ocemod.2013.10.004.
Mortenson, E., Steiner, N., Monahan, A.H., Hayashida, H., Sou, T. & Shao, A. (2020) Modeled impacts of sea ice exchange processes on Arctic Ocean carbon uptake and acidification (1980–2015). Journal of Geophysical Research: Oceans, 125(7), e2019JC015782. https://doi.org/10.1029/2019JC015782.
Nakawo, M. (1983) Measurement of air porosity of sea ice. Annals of Glaciology, 4, 204–208.
Nicolaus, M., Haas, C. & Bareiss, J. (2003) Observations of superimposed ice formation at melt-onset on fast ice on Kongsfjorden, Svalbard. Physics and Chemistry of the Earth, Parts A/B/C, 28(28–32), Article 28–32, https://doi.org/10.1016/j.pce.2003.08.048.
Nomura, D., Granskog, M.A., Fransson, A., Chierici, M., Silyakova, A., Ohshima, K.I., et al. (2018) CO2 flux over young and snowcovered Arctic pack ice in winter and spring. Biogeosciences, 15(11), Article 11, https://doi.org/10.5194/bg-15-3331-2018.
Nomura, D., Ikawa, H., Kawaguchi, Y., Kanna, N., Kawakami, T., Nosaka, Y., et al. (2022) Atmosphere-sea ice-ocean interaction study in Saroma-ko Lagoon, Hokkaido, Japan 2021. Bulletin of Glaciological Research, 40(0), 1–17, https://doi.org/10.5331/bgr.21R02.
Nomura, D., Koga, S., Kasamatsu, N., Shinagawa, H., Simizu, D., Wada, M., et al. (2012) Direct measurements of DMS flux from Antarctic fast sea ice to the atmosphere by a chamber technique. Journal of Geophysical Research: Oceans, 117, 1–8, https://doi.org/10.1029/2010JC006755.
Nomura, D., Yoshikawa-Inoue, H., Toyota, T. & Shirasawa, K. (2010) Effects of snow, snowmelting and refreezing processes on air-sea-ice CO2 flux. Journal of Glaciology, 56(196), Article 196, https://doi.org/10.3189/002214310791968548.
Norris, S.J., Brooks, I.M., De Leeuw, G., Sirevaag, A., Leck, C., Brooks, B.J., et al. (2011) Measurements of bubble size spectra within leads in the Arctic summer pack ice. Ocean Science, 7(1), 129–139, https://doi.org/10.5194/os-7-129-2011.
Notz, D. & Worster, M.G. (2009) Desalination processes of sea ice revisited. Journal of Geophysical Research: Oceans, 114(C5), C05006, https://doi.org/10.1029/2008JC004885.
Papadimitriou, S., Kennedy, H., Kattner, G., Dieckmann, G.S. & Thomas, D.N. (2004) Experimental evidence for carbonate precipitation and CO2 degassing during sea ice formation. Geochimica et Cosmochimica Acta, 68(8), 1749–1761, https://doi.org/10.1016/j.gca.2003.07.004.
Papadimitriou, S., Kennedy, H., Kennedy, P. & Thomas, D.N. (2013) Ikaite solubility in seawater-derived brines at 1 atm and subzero temperatures to 265 K. Geochimica et Cosmochimica Acta, 109(0), Article 0, https://doi.org/10.1016/j.gca.2013.01.044.
Papadimitriou, S., Loucaides, S., Rérolle, V.M., Kennedy, P., Achterberg, E.P., Dickson, A.G., et al. (2018) The stoichiometric dissociation constants of carbonic acid in seawater brines from 298 to 267 K. Geochimica et Cosmochimica Acta, 220, 55–70, https://doi.org/10.1016/j.gca.2017.09.037.
Papadimitriou, S., Thomas, D.N., Kennedy, H., Haas, C., Kuosa, H., Krell, A., et al. (2007) Biogeochemical composition of natural sea ice brines from the Weddell Sea during early austral summer. Limnology and Oceanography, 52(5), Article 5, https://doi.org/10.4319/lo.2007.52.5.1809.
Papakyriakou, T.N. & Miller, L.A. (2011) Springtime CO2 exchange over seasonal sea ice in the Canadian Arctic Archipelago. Annals of Glaciology, 52, 215–224.
Perovich, D.K. & Gow, A.J. (1996) A quantitative description of sea ice inclusions. Journal of Geophysical Research: Oceans, 101(C8), Article C8, https://doi.org/10.1029/96JC01688.
Poisson, A. & Chen, C.-T.A. (1987) Why is there little anthropogenic CO2 in the Antarctic bottom water? Deep Sea Research Part A. Oceanographic Research Papers, 34(7), Article 7, https://doi.org/10.1016/0198-0149(87)90075-6.
Pustogvar, A. & Kulyakhtin, A. (2016) Sea ice density measurements. Methods and uncertainties. Cold Regions Science and Technology, 131, 46–52, https://doi.org/10.1016/j.coldregions.2016.09.001.
Quack, B. & Wallace, D.W.R. (2003) Air-sea flux of bromoform: controls, rates, and implications. Global Biogeochemical Cycles, 17(1), Article 1, https://doi.org/10.1029/2002GB001890.
Quinn, P.K. & Bates, T.S. (2011) The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature, 480(7375), Article 7375, https://doi.org/10.1038/nature10580.
Randall, K., Scarratt, M., Levasseur, M., Michaud, S., Xie, H. & Gosselin, M. (2012) First measurements of nitrous oxide in Arctic sea ice. Journal of Geophysical Research, 117(C9), Article C9, https://doi.org/10.1029/2011jc007340.
Raynaud, D., Delmas, R., Ascencio, J.M. & Legrand, M. (1982) Gas extraction from polar ice cores: a critical issue for studying the evolution of atmospheric CO2 and ice-sheet surface elevation. Annals of Glaciology, 3, 265–268.
Repeta, D.J., Ferrón, S., Sosa, O.A., Johnson, C.G., Repeta, L.D., Acker, M., et al. (2016) Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nature Geoscience, 9(12), 884–887.
Roukaerts, A., Deman, F., Van der Linden, F., Carnat, G., Bratkic, A., Moreau, S., et al. (2021) The biogeochemical role of a microbial biofilm in sea ice. Elementa: Science of the Anthropocene, 9(1), Article 1, https://doi.org/10.1525/elementa.2020.00134.
Ruppel, C.D. & Kessler, J.D. (2017) The interaction of climate change and methane hydrates. Reviews of Geophysics, 55(1), Article 1, https://doi.org/10.1002/2016RG000534.
Rutgers van der Loeff, M.M., Cassar, N., Nicolaus, M., Rabe, B. & Stimac, I. (2014) The influence of sea ice cover on air-sea gas exchange estimated with radon-222 profiles. Journal of Geophysical Research: Oceans, 119(5), Article 5, https://doi.org/10.1002/2013JC009321.
Rysgaard, S., Bendtsen, J., Delille, B., Dieckmann, G.S., Glud, R.N., Kennedy, H., et al. (2011) Sea ice contribution to the air-sea CO2 exchange in the Arctic and Southern Oceans. Tellus B, 63, 823–830, https://doi.org/10.1111/j.1600-0889.2011.00571.x.
Rysgaard, S., Bendtsen, J., Pedersen, L.T., Ramløv, H. & Glud, R.N. (2009) Increased CO2 uptake due to sea ice growth and decay in the Nordic Seas. Journal of Geophysical Research, 114(C9), Article C9, https://doi.org/10.1029/2008JC005088.
Rysgaard, S. & Glud, R.N. (2004) Anaerobic N2 production in Arctic sea ice. Limnology and Oceanography, 49(1), Article 1, https://doi.org/10.4319/lo.2004.49.1.0086.
Rysgaard, S., Glud, R.N., Sejr, M.K., Bendtsen, J. & Christensen, P.B. (2007) Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas. Journal of Geophysical Research, 112(C3), C03016, https://doi.org/10.1029/2006JC003572.
Rysgaard, S., Søgaard, D.H., Cooper, M., Pućko, K.M., Lennert, K., Papakyriakou, T.N., et al. (2013) Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics. The Cryosphere, 7(2), Article 2. https://doi.org/10.5194/tc-7-707-2013.
Rysgaard, S., Wang, F., Galley, R.J., Grimm, R., Notz, D., Lemes, M., et al. (2014) Temporal dynamics of ikaite in experimental sea ice. The Cryosphere, 8(4), Article 4, https://doi.org/10.5194/tc-8-1469-2014.
Saiz-Lopez, A., Mahajan, A.S., Salmon, R.a., Bauguitte, S.J.-B., Jones, A.E., Roscoe, H.K., et al. (2007) Boundary layer halogens in coastal Antarctica. Science (New York, N.Y.), 317(5836), Article 5836, https://doi.org/10.1126/science.1141408.
Salganik, E., Crabeck, O., Fuchs, N., Hutter, N., Anhaus, P. & Landy, J.C. (2024) Impacts of air fraction increase on Arctic sea-ice thickness retrieval during melt season. EGUsphere, 1–30, https://doi.org/10.5194/egusphere-2024-2398.
Salganik, E., Lange, B.A., Katlein, C., Matero, I., Anhaus, P., Muilwijk, M., et al. (2023) Observations of preferential summer melt of Arctic sea-ice ridge keels from repeated multibeam sonar surveys. The Cryosphere, 17(11), 4873-4887, https://doi.org/10.5194/tc-17-4873-2023.
Schönhardt, A., Begoin, M., Richter, A., Wittrock, F., Kaleschke, L., Gómez Martín, J.C., et al. (2012) Simultaneous satellite observations of IO and BrO over Antarctica. Atmospheric Chemistry and Physics, 12(14), Article 14, https://doi.org/10.5194/acp-12-6565-2012.
Schönhardt, A., Wittrock, F., Kirk, H., Oetjen, H. & Burrows, J.P. (2008) Observations of iodine monoxide columns from satellite. Atmospheric Chemistry and Physics, 8, 637–653.
Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D. & Gustafsson, O. (2010) Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science (New York, N.Y.), 327(5970), 1246–1250, https://doi.org/10.1126/science.1182221.
Simpson, W.R., Glasow, R.V., Riedel, K., Anderson, P. & Ariya, P. (2007) Halogens and their role in polar boundary-layer ozone depletion. Atmospheric Chemistry and Physics, 7(16), 4375–4418
Stauffer, B., Neftel, A., Oeschger, H. & Schwander, J. (1985) CO2 concentration in air extracted from Greenland ice samples. In: Geophysical Monograph Series (Éds. C.C. Langway, H. Oeschger & W. Dansgaard), Vol. 33, pp. 85–89. American Geophysical Union, https://doi.org/10.1029/GM033p0085.
Stefels, J. (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants PAPS. Journal of Sea Research, 43, 183–197.
Stefels, J., Steinke, M., Turner, S.M., Malin, G. & Belviso, S. (2007) Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry, 83(1–3), Article 1–3, https://doi.org/10.1007/s10533-0079091-5.
Stephens, B.B. & Keeling, R.F. (2000) The influence of Antarctic sea ice on glacial ± interglacial CO2 variations. Nature, 404, 171–174.
Sunda, W., Kieber, D.J., Kiene, R.P. & Huntsman, S. (2002) An antioxidant function for DMSP and DMS in marine algae. Nature, 418(6895), Article 6895, https://doi.org/10.1038/nature00851.
Takahashi, T., Sutherland, S.C., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D.W., et al. (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part II: Topical Studies in Oceanography, 56(8–10), Article 8–10, https://doi.org/10.1016/j.dsr2.2008.12.009.
Tilbrook, B.D. & Karl, D.M. (1994) Dissolved methane distributions, sources, and sinks in the western Bransfield Strait, Antarctica. Journal of Geophysical Research, 99(C8), Article C8, https://doi.org/10.1029/94jc01043.
Timco, G.W. & Frederking, R.M.W. (1996) A review of sea ice density. Cold Regions Science and Technology, 24, 1–6.
Tison, J.-L., Haas, C., Gowing, M.M., Sleewaegen, S., Bernard, A., Sleewagen, S., et al. (2002) Tank study of physico-chemical controls on gas content and composition during growth of young sea-ice. Journal of Glaciology, 48(161), 267–278.
Tison, J.-L., Worby, A., Delille, B., Brabant, F., Papadimitriou, S., Thomas, D.N., et al. (2008) Temporal evolution of decaying summer first-year sea ice in the Western Weddell Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography, 55(8–9), Article 8–9, https://doi.org/10.1016/j.dsr2.2007.12.021.
Trevena, A.J. & Jones, G.B. (2006) Dimethylsulphide and dimethylsulphoniopropionate in Antarctic sea ice and their release during sea ice melting. Marine Chemistry, 98(2–4), Article 2–4.
Tsurikov, V.L. (1979) The formation and composition of the gas content of sea ice. Journal of Glaciology, 22(86), Article 86.
Uhlig, C., Kirkpatrick, J.B., Hondt, S.D. & Loose, B. (2018) Methane-oxidizing seawater microbial communities from an Arctic shelf. Biogeosciences, 15(11), 3311–3329. https://doi.org/10.5194/bg-15-3311-2018.
Untersteiner, N. (1968) Natural desalinisation and equilibrium salinity profile of perennial sea ice. Journal of Geophysical Research, 73, 1251–1257.
Upstill-Goddard, R.C.R.C., Rees, A.P. & Owens, N.J.P. (1996) Simultaneous high-precision measurements of methane and nitrous oxide in water and seawater by single phase equilibration gas chromatography. Deep Sea Research Part I: Oceanographic Research Papers, 43(10), Article 10, https://doi.org/10.1016/S0967-0637(96)00074-X.
Van der Linden, F. (2021) Autumn to spring inorganic carbon processes in pack and landfast sea ice in the Ross Sea, Antarctica. Doctoral thesis, ULiège – Université de Liège. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/258949. https://doi.org/10.1016/j.marchem.2014.07.005.
Van der Linden, F.C., Tison, J.-L.,Champenois, W., Moreau, S., Carnat, G., Kotovitch, M., et al. (2020) Sea ice CO2 dynamics across seasons: impact of processes at the interfaces. Journal of Geophysical Research: Oceans, 125(6), https://doi.org/10.1029/2019jc015807.
Vancoppenolle, M., Madec, G., Thomas, M. & McDougall, T.J. (2019) Thermodynamics of sea ice phase composition revisited. Journal of Geophysical Research: Oceans, 124(1), Article 1, https://doi.org/10.1029/2018JC014611.
Verdugo, J., Damm, E. & Nikolopoulos, A. (2021) Methane cycling within sea ice: results from drifting ice during late spring, north of Svalbard. The Cryosphere, 15(6), 2701–2717, https://doi.org/10.5194/tc-15-2701-2021.
von Glasow, R. & Crutzen, P.J. (2004) Model study of multiphase DMS oxidation with a focus on halogens. Atmospheric Chemistry and Physics, 4(3), Article 3, https://doi.org/10.5194/acp-4-589-2004.
Wang, Q., Lu, P., Leppäranta, M., Cheng, B., Zhang, G. & Li, Z. (2020) Physical properties of summer sea ice in the Pacific sector of the Arctic during 2008–2018. Journal of Geophysical Research: Oceans, 125(9), Article 9, https://doi.org/10.1029/2020JC016371.
Watts, J., Bell, T.G., Anderson, K., Butterworth, B.J., Miller, S., Else, B.,et al. (2022) Impact of sea ice on air-sea CO2 exchange–a critical review of polar eddy covariance studies. Progress in Oceanography, 201, 102741, https://doi.org/10.1016/j.pocean.2022.102741.
Weiss, R.F. (1987) Winter Weddell Sea Project 1986: trace gas studies during legs ANT V/2 and ANT V/3 of Polarstern. Antarctic Journal of the United States, 22, 99–100.
Wells, A.J., Hitchen, J.R. & Parkinson, J.R.G. (2019) Mushy-layer growth and convection, with application to sea ice. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2146), 20180165. https://doi.org/10.1098/rsta.2018.0165.
Whiticar, M.J. (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161(1–3), Article 1–3, https://doi.org/10.1016/S0009-2541(99)00092-3.
Yau, A.M., Bender, M.L., Blunier, T. & Jouzel, J. (2016) Setting a chronology for the basal ice at Dye-3 and GRIP: implications for the long-term stability of the Greenland Ice Sheet. Earth and Planetary Science Letters, 451, 1–9, https://doi.org/10.1016/j.epsl.2016.06.053.
Zemmelink, H.J., Dacey, J.W.H., Houghton, L., Hintsa, E.J. & Liss, P.S. (2008) Dimethylsulfide emissions over the multi-year ice of the western Weddell Sea. Geophysical Research Letters, 35(6), Article 6, https://doi.org/10.1029/2007GL031847.
Zhou, J., Delille, B., Brabant, F. & Tison, J.L. (2014a) Insights into oxygen transport and net community production in sea ice from oxygen, nitrogen and argon concentrations. Biogeosciences, 11(18), 5007–5020.
Zhou, J., Delille, B., Eicken, H., Vancoppenolle, M., Brabant, F., Carnat, G., et al. (2013) Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): insights on brine and gas dynamics across seasons. Journal of Geophysical Research: Oceans, 118(6), 3172–3189, https://doi.org/10.1002/jgrc.20232.
Zhou, J., Kotovitch, M., Kaartokallio, H., Moreau, S., Tison, J.-L., Kattner, G., et al. (2016) The impact of dissolved organic carbon and bacterial respiration on pCO2 in experimental sea ice. Progress in Oceanography, 141(January), 153–167, https://doi.org/10.1016/j.pocean.2015.12.005.
Zhou, J., Tison, J.-L.L., Carnat, G., Geilfus, N.X. & Delille, B. (2014b) Physical controls on the storage of methane in landfast sea ice. The Cryosphere, 8(3), 1019–1029, https://doi.org/10.5194/tc-8-1019-2014.