[en] The FUV experiment onboard the IMAGE spacecraft offers the unique possibility to obtain simultaneous snapshots of the global north aurora every 2 minutes in three different spectral channels. The WIC camera has a broadband channel covering the 135-190 nm interval including the N[SUB]2[/SUB] LBH bands, part of which may be absorbed by O[SUB]2[/SUB]. The SI13 channel is centered on the OI 135.6 nm line which is optically thin and includes a ~ 40% LBH contribution. Finally, the SI12 camera images the Doppler-shifted Ly-α emission excited by the proton aurora. This set of instrumentation is combined with auroral models to determine the electron and the proton energy fluxes from the magnetosphere. Examples will be presented and compared with the values deduced from the NOAA satellites. Simultaneous in-situ measurements of the particle characteristic energy have been combined with the data extracted from the FUV images to validate the models and derive empirical relationships between the particle flux measured by the detectors and the brightness observed by FUV-IMAGE at the footprint of the same magnetic field line. Finally, we will assess the ability to deduce the characteristic energy of the auroral particles from the ratio of co-registered images in the WIC and SI13 cameras. This method is based on the difference of vertical distribution of the LBH and the OI 135.6 nm emissions. It offers the potential to globally remotely sense not only the energy flux from the magnetosphere but also the main features of the electron characteristic energy.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)