Bifurcations; Design; Nonlinear normal modes; Nonlinear vibration; Modeling and Simulation; Mechanics of Materials; Mechanical Engineering; Computer Science Applications
Abstract :
[en] The objective of this Chapter is to demonstrate how the intentional utilization of nonlinearity can bring important benefits in the area of engineering design. Two different applications are considered, namely (i) the tailoring of the nonlinear normal modes of a structure through the addition of a nonlinearity and (ii) the management of the bifurcations of a structure through the addition of a nonlinear tuned vibration absorber.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Kerschen, Gaëtan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Detroux, T.; Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
Habib, G.; Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
Language :
English
Title :
Tailoring Nonlinear Normal Modes and Managing Bifurcations
Publication date :
2024
Main work title :
CISM International Centre for Mechanical Sciences, Courses and Lectures
Publisher :
Springer Science and Business Media Deutschland GmbH
Antonio, D., Zanette, D. H., & Lopez, D. (2012). Frequency stabilization in nonlinear microme-chanical oscillators. Nature Communications, 3, 806.
Boechler, N., Theocharis, G., & Daraio, C. (2011). Bifurcation-based acoustic switching and rec-tification. Nature Materials, 10, 665–668.
Coudeyras, N., Sinou, J. J., & Nacivet, S. (2009). A new treatment for predicting the self-excited vibrations of nonlinear systems with frictional interfaces: The constrained harmonic balance method with application to disc brake squeal. Journal of Sound and Vibration, 379, 1175–1199.
Denegri, C. M., Jr. (2000). Limit cycle oscillation flight test results of a fighter with external stores. Journal of Aircraft, 37, 761–769.
Depouhon, A., & Detournay, E. (2014). Instability regimes and self-excited vibrations in deep drilling systems. Journal of Sound and Vibration, 333, 2019–2039.
Detroux, T., Renson, L., Masset, L., & Kerschen, G. (2015). The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Computer Methods in Applied Mechanics and Engineering, 296, 18–38.
Dhooge, A., Govaerts, W., & Kuznetsov, Y. A. (2003). MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. Journal ACM Transactions on Mathematical Software, 29, 141–164.
Domany, E., & Gendelman, O. V. (2013). Dynamic responses and mitigation of limit cycle oscilla-tions in Van der Pol-Duffing oscillator with nonlinear energy sink. Journal of Sound and Vibration, 332, 5489–5507.
Dou, S., Strachan, B. S., Shaw, S. W., & Jensen, J. S. (2015). Structural optimization for nonlinear dynamic response. Philosophical Transactions of the Royal Society A, 373, 20140408.
Ebelin, W., Herzel, H., Richert, W., & Schimansky-Geier, L. (1986). Influence of noise on Duffing-Van der Pol oscillators. Journal of Applied Mathematics and Mechanics, 66, 141–146.
Fujino, Y., & Abe, M. (1993). Design formulas for tuned mass dampers based on a perturbation technique. Earthquake Engineering and Structural Dynamics, 22, 833–854.
Gattulli, V., Di Fabio, F., & Luongo, A. (2001). Simple and double Hopf bifurcations in aeroelastic oscillators with tuned mass dampers. Journal of the Franklin Institute, 338, 187–201.
Gattulli, V., Di Fabio, F., & Luongo, A. (2003). One to one resonant double hopf bifurcation in aeroelastic oscillators with tuned mass dampers. Journal of Sound and Vibration, 262, 201–217.
Gattulli, V., Di Fabio, F., & Luongo, A. (2004). Nonlinear tuned mass damper for self-excited oscillations. Wind and Structures, 7, 251–264.
Gendelman, O. V., & Bar, T. (2010). Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink. Physica D, 239, 220–229.
Gendelman, O. V., Vakakis, A. F., Bergman, L. A., & McFarland, D. M. (2010). Asymptotic analysis of passive suppression mechanisms for aeroelastic instabilities in a rigid wing in subsonic flow. SIAM Journal on Applied Mathematics, 70(5), 1655–1677.
Grenat, C., Baguet, S., Larmarque, C. H., & Dufour, R. (2019). A multi-parametric recursive con-tinuation method for nonlinear dynamical systems. Mechanical Systems and Signal Processing, 127, 276–289.
Griffin, O. M., & Skop, R. A. (1973). The vortex-excited resonant vibrations of circular cylinders. Journal of Sound and Vibration, 31, 235–249.
Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems and bifurcations of vectors fields. NY: Springer.
Habib, G., Rega, G., & Stepan, G. (2012). Nonlinear bifurcation analysis of a single-DoF model of a robotic arm subject to digital position control. Journal of Computational Nonlinear Dynamics, 8, 011009.
Habib, G., Detroux, T., Viguié, R., & Kerschen, G. (2014). Nonlinear generalization of Den Hartog’s equal peak method. Mechanical Systems and Signal Processing, 52–53, 17–28.
Habib, G., Detroux, T., Viguié, R., & Kerschen, G. (2015). Nonlinear generalization of the Den Hartog’s equal-peak method. Mechanical Systems and Signal Processing, 52–53, 17–28.
Habib, G., Grappasonni, C., & Kerschen, G. (2016). Passive linearization of nonlinear resonances. Journal of Applied Physics, 120, 044901.
Haxton, R. S., & Barr, A. D. S. (1972). The autoparametric vibration absorber. Journal of Manu-facturing Science and Engineering, 94, 119–125.
Haxton, R. S., & Barr, A. D. S. (1972). The autoparametric vibration absorber. ASME Journal of Engineering for Industry, 94(1), 119–125.
Ji, J. C., & Hansen, C. H. (2006). Stability and dynamics of a controlled van der Pol-Duffing oscillator. Chaos Solitons and Fractals, 28, 555–570.
Karami, A., & Inman, D. J. (2012). Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesting. Applied Physics Letters, 100, 042901.
Kerschen, G., Peeters, M., Golinval, J. C., & Vakakis, A. F. (2009). Nonlinear normal modes, Part I: A useful framework for the structural dynamicist. Mechanical Systems and Signal Processing, 23(1), 170–194.
Ko, J., Kurdila, A., & Strganac, T. (1997). Nonlinear control of a prototypical wing section with torsional nonlinearity. Journal of Guidance, Control and Dynamics, 20, 1181–1189.
Kovacic, I., & Rand, R. H. (2013). About a class of nonlinear oscillators with amplitude-independent frequency. Nonlinear Dynamics, 74, 455–465.
Kuznestov, Y. A. (1998). Elements of Applied Bifurcation Theory (2nd ed.). New York: Springer.
Lacarbonara, W., & Cetraro, M. (2011). Flutter control of a lifting surface via visco-hysteretic vibration absorbers. International Journal of Aeronautical and Space Sciences, 2, 331–345.
Lee, Y. S., Vakakis, A. F., Bergman, L. A., & McFarland, D. M. (2006). Suppression of limit cycle oscillations in the Van der Pol oscillator by means of passive nonlinear energy sinks. Structural Control and Health Monitoring, 13, 41–47.
Lee, Y. S., Vakakis, A. F., Bergman, L. A., McFarland, D. M., & Kerschen, G. (2007). Suppression of aeroelastic instability by means of broadband passive targeted energy transfers. Part I: Theory, AIAA Journal, 45(3), 693–711.
Lee, Y. S., Kerschen, G., McFarland, D. M., Hill, W. J., Nichkawde, C., Strganac, T. W., Bergman, L. A., & Vakakis, A. F. (2007). Suppression of aeroelastic instability by means of broadband passive targeted energy transfers. Part II: Experiments, AIAA Journal, 45(12), 2391–2400.
Lee, Y. S., Vakakis, A. F., Bergman, L. A., McFarland, D. M., & Kerschen, G. (2008). Enhancing robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks. AIAA Journal, 46(6), 1371–1394.
Lee, Y. S., Vakakis, A. F., McFarland, D. M., & Bergman, L. A. (2010). Non-linear system identi-fication of the dynamics of aeroelastic instability suppression based on targeted energy transfers. The Aeronautical Journal of the Royal Aeronautical Society, 114(1152), 61–82.
Li, X., Ji, J. C., Hansen, C. H., & Tan, C. (2006). The response of a Duffing-van der Pol oscillator under delayed feedback control. Journal of Sound and Vibration, 291, 644–655.
Luongo, A., & Zulli, D. (2014). Aeroelastic instability analysis of NES-controlled systems via a mixed multiple scale/harmonic balance method. Journal of Vibration and Control, 20, 1985–1998.
Mann, B. P., Bayly, P. V., Davies, M. A., & Halley, J. E. (2004). Limit cycles, bifurcations and accuracy of the milling process. Journal of Sound and Vibration, 277, 31–48.
Mansour, W. M. (1972). Quenching of limit cycles of a van der Pol oscillator. Journal of Sound and Vibration, 25, 395–405.
Natsiavas, S. (1993). Vibration absorbers for a class of self-excited mechanical systems. Journal of Applied Mechanics, 60, 382–387.
Nayfeh, A. H., & Balachandran, B. (2007). Applied nonlinear dynamics, analytical, computational, and experimental methods. New York:Wiley.
Niculescu, S. I., & Gu, K. (2004). Advances in time-delay systems. Berlin, Germany: Springer.
Oueini, S. S., Nayfeh, A. H., & Pratt, J. R. (1998). A nonlinear vibration absorber for flexible structures. Nonlinear Dynamics, 15, 259–282.
Papatheou, E., Tantaroudas, N. D., Da Ronch, A., Cooper, J. E., & Mottershead, J. E. (2013). Active control for flutter suppression: An experimental investigation. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD), Bristol, UK.
Petrov, E. P. (2007). Direct parametric analysis of resonance regimes for nonlinear vibrations of bladed disks. ASME Journal of Turbomachinery, 129(3), 495–502.
Potekin, R., Asadi, K., Kim, S., Bergman, L. A., Vakakis, A. F., & Cho, H. (2020). Ultrabroadband microresonators with geometrically nonlinear stiffness and dissipation. Physical Review Applied, 13, 014011.
Renault, A., Thomas, O., & Mahé, H. (2019). Numerical antiresonance continuation of structural systems. Mechanical Systems and Signal Processing, 116, 963–984.
Rowbottom, M. D. (1981). The optimization of mechanical dampers to control self-excited galloping oscillations. Journal of Sound and Vibration, 75, 559–576.
Seydel, R. (2010). Practical bifurcation and stability analysis. New-York, NY: Springer.
Spadoni, A., & Daraio, C. (2010). Generation and control of sound bullets with a nonlinear acoustic lens. Proceedings of the National Academy of Sciences, 107, 7230.
Stepan, G. (1989). Retarded dynamical systems: Stability and characteristic functions UK: Long-man..
Stepan, G. (2001). Modelling nonlinear regenerative effects in metal cutting. Philosophical Trans-actions of the Royal Society A, 359, 739–757.
Strachan, B. S., Shaw, S. W., & Kogan, O. (2013). Subharmonic resonance cascades in a class of coupled resonators. Journal of Computation and Nonlinear Dynamics, 8(4), 041015.
Szemplinska-Stupnicka, W., & Rudowski, J. (1997). The coexistence of periodic, almost periodic and chaotic attractors in the Van der Pol-Duffing oscillator. Journal of Sound and Vibration, 199, 165–175.
Tondl, A. (1975). Quenching of self-excited vibrations equilibrium aspects. Journal of Sound and Vibration, 42, 251–260.
Trickey, S. T., Virgin, L. N., & Dowell, E. H. (2002). The stability of limit cycle oscillations in a nonlinear aeroelastic system. Proceedings of the Royal Society A, 458, 2203–2226.
Tumkur, R. K. R., Calderer, R., Masud, A., Bergman, L. A., Pearlstein, A. J., & Vakakis, A. F. (2013). Computational study of vortex-induced vibrations of a sprung rigid circular cylinder with a strongly nonlinear internal attachment. Journal of Fluids and Structures, 40, 214–232.
Vakakis, A. F., Gendelman O. V., Bergman, L. A., McFarland, D. M., Kerschen, G., & Lee, Y. S. (2009) Nonlinear targeted energy transfer in mechanical and structural systems. Springer.
van Dijk, N. J. M., van de Wouw, N., Doppenberg, E. J. J., Oosterling, J. A. J., & Nijmeijer, H. (2012). Robust active chatter control in the high-speed milling process. IEEE Transactions on Control Systems Technology, 20, 901–917.
von Wagner, U., Hochlenert, D., & Hagedorn, P. (2007). Minimal models for disk brake squeal. Journal of Sound and Vibration, 302, 527–539.
Vyas, A., & Bajaj, A. K. (2001). Dynamics of autoparametric vibration absorbers using multiple pendulums. Journal of Sound and Vibration, 246, 115–135.
Xu, J., & Chung, K. W. (2003). Effects of time delayed position feedback on a van der Pol-Duffing oscillator. Physica D, 180, 17–39.