No full text
Paper published in a book (Scientific congresses and symposiums)
Computational Evaluation of the Combination of Semi-Supervised and Active Learning for Histopathology Image Segmentation with Missing Annotations
Jiménez, Laura Gálvez; Dierckx, Lucile; Amodei, Maxime et al.
2023In Proceedings - 2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023
Peer reviewed
 

Files


Full Text
No document available.

Send to



Details



Keywords :
Active Learning; Cancer tissues; Computational evaluation; Digital pathologies; Gland segmentations; Human expert; Images segmentations; Real-world; Semi-active; Semi-supervised learning; Artificial Intelligence; Computer Science Applications; Computer Vision and Pattern Recognition
Abstract :
[en] Real-world segmentation tasks in digital pathology require a great effort from human experts to accurately annotate a sufficiently high number of images. Hence, there is a huge interest in methods that can make use of non-annotated samples, to alleviate the burden on the annotators. In this work, we evaluate two classes of such methods, semi-supervised and active learning, and their combination on a version of the GlaS dataset for gland segmentation in colorectal cancer tissue with missing annotations. Our results show that semi-supervised learning benefits from the combination with active learning and outperforms fully supervised learning on a dataset with missing annotations. However, an active learning procedure alone with a simple selection strategy obtains results of comparable quality.
Disciplines :
Computer science
Author, co-author :
Jiménez, Laura Gálvez;  Université Libre de Bruxelles, Brussels, Belgium
Dierckx, Lucile;  Université Catholique de Louvain, Louvain-La-Neuve, Belgium
Amodei, Maxime ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Khosroshahi, Hamed Razavi;  Université Libre de Bruxelles, Brussels, Belgium
Chidambaran, Natarajan;  Université de Mons, Mons, Belgium
Ho, Anh-Thu Phan;  Multitel, Mons, Belgium
Franzin, Alberto;  Université Libre de Bruxelles, Brussels, Belgium
Language :
English
Title :
Computational Evaluation of the Combination of Semi-Supervised and Active Learning for Histopathology Image Segmentation with Missing Annotations
Publication date :
2023
Event name :
2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)
Event place :
Paris, Fra
Event date :
02-10-2023 => 06-10-2023
Main work title :
Proceedings - 2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023
Publisher :
Institute of Electrical and Electronics Engineers Inc.
ISBN/EAN :
9798350307443
Peer review/Selection committee :
Peer reviewed
Funding text :
ThisworkwassupportedbyServicePublicdeWal-lonie Recherche under grant n°2010235 - ARIAC by DIGI-TALWALLONIA4.AI. Computationalresourceshave been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche ScientifiquedeBelgique(F.R.S.-FNRS) underGrantNo. 2.5020.11 and by the Walloon Region. We thank Prof. Christine Decaestecker and Charlotte Nachtegel for the use-fuldiscussionsandcomments.
Available on ORBi :
since 16 April 2025

Statistics


Number of views
37 (2 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
3
Scopus citations®
without self-citations
3
OpenCitations
 
2
OpenAlex citations
 
3

Bibliography


Similar publications



Contact ORBi