2025 • In Martin Homann (Editor), Aubrey Zerkle (Editor), Alex Webb (Editor), Wladyslaw Altermann (Editor), Richard R. Ernst (Editor) (Ed.) The Archean Earth Tempo and Events
[en] Deciphering early life on Earth is a highly pursued topic in Earth Science. At the frontiers of multiple arrays of investigation, objects that could be considered as the oldest microfossils on Earth are analyzed with caution. The aim is to observe directly the oldest forms of life that arose on the primitive Earth, and possibly document their metabolism and/or ecology. Possible early traces of life and ecosystems have been found in the shape of large organo-sedimentary structures called stromatolites. Constraints on the metabolisms and/or paleoenvironmental conditions that attended the accretion of stromatolites (as well as other rock types) have been sought using isotope ratio and chemical element analysis. Only a few cases of mineral molds of microfossils in Neoarchean stromatolites show cellular evidence of microbial participation in their accretion. Nevertheless, candidate microfossils may be assessed in Archean clastic (e.g., shales) and chemical (e.g., cherts) rocks. Due to preservation biases, the existence of biomorphic carbonaceous and/or mineral microstructures, and limits introduced by observation techniques and actualism, it appears that not all fossillike microstructures may derive from the bodies of ancient microorganisms. Multiscale investigations showed that some of the oldest claimed microfossil populations could have been shaped by abiotic processes. When abiotic morphogenesis is demonstrated, fossillike structures are classified as pseudofossils. Dubiofossils include the fossil-like microstructures of uncertain origin. Challenges thus remain in order to consider true Archean microfossils without any doubt. The following chapter reviews the major debates and interpretations about microstructures that could be considered as the oldest microfossils found on Earth.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Alleon J., Bernard S., Le Guillou C., Beyssac O., Sugitani K. and Robert F. (2018) Chemical nature of the 3.4 Ga Strelley Pool microfossils. Geochim. Perspect. Lett. 7, 37-42. DOI: 10.7185/geochemlet.1817
Alleon J., Bernard S., Le Guillou C., Daval D., Skouri-panet F., Pont S., Delbes L. and Robert F. (2016) Early entombment within silica minimizes the molecular degradation of microorganisms during advanced diagenesis. Chem. Geol. 437, 98-108. DOI: doi.org/10.1016/j.chemgeo.2016.05.034
Alleon J. and Summons R. E. (2019) Organic geochemical approaches to understanding early life. Free Radic. Biol. Med. 140, 103-112. DOI: doi.org/10.1016/j.freeradbiomed.2019.03.005.
Allwood A. C., Grotzinger J. P., Knoll A. H., Burch I. W., Anderson M. S. and Coleman M. L. (2009) Controls on development and diversity of Early Archean stromatolites. Proc. Natl. Acad. Sci. 106, 9548-9555. DOI: 10.1073/pnas.0903323106
Allwood A. C., Walter M. R., Kamber B. S., Marshall C. P. and Burch I. W. (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441, 714-718. DOI: 10.1038/nature04764
Altermann W. and Kazmierczak J. (2003) Archean microfossils: A reappraisal of early life on Earth. Res. Microbiol. 154, 611-617. DOI: 10.1016/j.resmic.2003.08.006
Altermann W. and Pinti D. L. (2021) Apex Chert, Microfossils. In Encyclopedia of Astrobiology Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 1-10. DOI: 10.1007/978-3-642-27833-4_1866-7
Altermann W. and Schopf J. W. (1995) Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambrian Res. 75, 65-90. DOI: 10.1016/0301-9268(95)00018-Z
Angert E. R. (2005) Alternatives to binary fission in bacteria. Nat. Rev. Microbiol. 3, 214-224. DOI: 10.1038/nrmicro1096
Awramik S. M., Schopf J. W. and Walter M. R. (1988) Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in archean stromatolites? A discussion. Precambrian Res. 39, 303-309. DOI: 10.1016/0301-9268(88)90023-X
Awramik S. M., Schopf J. W. and Walter M. R. (1983) Filamentous fossil bacteria from the archean of Western Australia. Dev. Precambrian Geol. 7, 249-266. DOI: 10.1016/S0166-2635(08)70251-2
Baines S. B., Twining B. S., Brzezinski M. A., Krause J. W., Vogt S., Assael D. and McDaniel H. (2012) Significant silicon accumulation by marine picocyanobacteria. Nat. Geosci. 5, 886-891. DOI: 10.1038/ngeo1641
Banerjee N. R., Simonetti A., Furnes H., Muehlenbachs K., Staudigel H., Heaman L. and Van Kranendonk M. J. (2007) Direct dating of Archean microbial ichnofossils. Geology 35, 487-490. DOI: 10.1130/G23534A.1
Baumgartner R. J., Van Kranendonk M. J., Fiorentini M. L., Pages A., Wacey D., Kong C., Saunders M. and Ryan C. (2020) Formation of micro-spherulitic barite in association with organic matter within sulfidized stromatolites of the 3.48 billion-year-old Dresser Formation, Pilbara Craton. Geobiology 18, 415-425. DOI: 10.1111/gbi.12392
Beghin J., Guilbaud R., Poulton S. W., Gueneli N., Brocks J. J., Storme J. Y., Blanpied C. and Javaux E. J. (2017) A palaeoecological model for the late Mesoproterozoic - early Neoproterozoic Atar/El Mreiti Group, Taoudeni Basin, Mauritania, northwestern Africa. Precambrian Res. 299, 1-14. DOI: 10.1016/j.precamres.2017.07.016.
Boal D. and Ng R. (2010) Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria. Paleobiology 36, 555-572. DOI: 10.1666/08096.1
Bosak T., Souza-Egipsy V. and Newman D. K. (2004) A laboratory model of abiotic peloid formation. Geobiology 2, 189-198. DOI: 10.1111/j.1472-4677.2004.00031.x.
Brasier M. D., Antcliffe J., Saunders M. and Wacey D. (2015) Changing the picture of Earth's earliest fossils (3.5-1.9 Ga) with new approaches and new discoveries. Proc. Natl. Acad. Sci. USA 112, 4859 LP - 4864. DOI: 10.1073/pnas.1405338111
Brasier M. D., Green O. R., Jephcoat A. P., Kleppe A. K., Van Kranendonk M. J., Lindsay J. F., Steele A. and Grassineau N. V (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416, 76-81. DOI: 10.1038/416076a
Brasier M. D., Green O. R., Lindsay J. F., McLoughlin N., Steele A. and Stoakes C. A. (2005) Critical testing of Earth’s oldest putative fossil assemblage from the ∼3.5 Ga Apex chert, Chinaman Creek, Western Australia. Precambrian Res. 140, 55-102. DOI: 10.1016/j.precamres.2005.06.008
Buick R. (1984) Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in Archaean stromatolites? Precambrian Res. 24, 157-172. DOI: 10.1016/0301-9268(84)90056-1
Buick R. (1988) Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in archaean stromatolites? A reply. Precambrian Res. 39, 311-317. DOI: 10.1016/0301-9268(88)90024-1
Buick R. (1990) Microfossil Recognition in Archean Rocks: An Appraisal of Spheroids and Filaments from a 3500 M.Y. Old Chert-Barite Unit at North Pole, Western Australia. Palaios 5, 441. DOI: 10.2307/3514837
Buick R. and Dunlop J. S. R. (1990) Evaporitic sediments of Early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37, 247-277. DOI: 10.1111/j.1365-3091.1990.tb00958.x
Buick R. (1992) The Antiquity of Oxygenic Photosynthesis Evidence. Science 255, 74-77. DOI: 10.1126/science.11536492
Butterfield N. J. (2015) Proterozoic photosynthesis - a critical review ed. B. Lomax. Palaeontology 58, 953-972. DOI: 10.1111/pala.12211
Campbell K. A., Lynne B. Y., Handley K. M., Jordan S., Farmer J. D., Guido D. M., Foucher F., Turner S. and Perry R. S. (2015) Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record. Astrobiology 15, 858-882. DOI: 10.1089/ast.2015.1307.
Cavalazzi B., Lemelle L., Simionovici A., Cady S. L., Russell M. J., Bailo E., Canteri R., Enrico E., Manceau A., Maris A., Salome M., Thomassot E., Bouden N., Tucoulou R. and Hofmann A. (2021) Cellular remains in a ∼3.42-billion-year-old subseafloor hydrothermal environment. Sci. Adv. 7. DOI: 10.1126/sciadv.abf3963
Cody G. D., Gupta N. S., Briggs D. E. G., Kilcoyne A. L. D., Summons R. E., Kenig F., Plotnick R. E. and Scott A. C. (2011) Molecular signature of chitin-protein complex in Paleozoic arthropods. Geology 39, 255-258. DOI: 10.1130/G31648.1
Colfen H. and Antonietti M. (1998) Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers. Langmuir 14, 582-589. DOI: 10.1021/la970765t
Cosmidis J. and Templeton A. S. (2016) Self-Assembly of biomorphic carbon/sulfur microstructures in sulfidic environments. Nat. Commun. 7, 1-9. DOI: 10.1038/ncomms12812
Coutant M., Lepot K., Fadel A., Addad A., Richard E., Troadec D., Ventalon S., Sugitani K. and Javaux E. J. (2022) Distinguishing cellular from abiotic spheroidal microstructures in the ca. 3.4 Ga Strelley Pool Formation. Geobiology, 1-24. DOI: 10.1111/gbi.12506
Criouet I., Viennet J. C., Jacquemot P., Jaber M. and Bernard S. (2021) Abiotic formation of organic biomorphs under diagenetic conditions. Geochemical Perspect. Lett. 16, 40-46. DOI: 10.7185/GEOCHEMLET.2102
Czaja A. D., Beukes N. J. and Osterhout J. T. (2016) Sulfur-oxidizing bacteria prior to the Great Oxidation Event from the 2 . 52 Ga Gamohaan Formation of South Africa. Geol. Soc. Am. 44, 1-4. DOI: 10.1130/G38150.1
Deamer D. W. and Dworkin J. P. (2005) Chemistry and physics of primitive membranes. Top. Curr. Chem. 259, 1-27. DOI: 10.3847/PSJ/abb60f
Delarue F., Bernard S., Sugitani K., Robert F., Tartese R., Albers S. V., Duhamel R., Pont S. and Derenne S. (2021) Microfossils with tail-like structures in the 3.4 Gyr old Strelley Pool Formation. Precambrian Res. 358. DOI: 10.1016/j.precamres.2021.106187
Delarue F., Robert F., Derenne S., Tartese R., Jauvion C., Bernard S., Pont S., Gonzalez-cano A., Duhamel R. and Sugitani K. (2020) Out of rock : A new look at the morphological and geochemical preservation of microfossils from the 3 . 46 Gyr-old Strelley Pool Formation. Precambrian Res. 336, 105472. DOI: 10.1016/j.precamres.2019.105472.
Delarue F., Robert F., Sugitani K., Tartese R., Duhamel R. and Derenne S. (2018a) Nitrogen isotope signatures of microfossils suggest aerobic metabolism 3.0 Gyr ago. Geochemical Perspect. Lett., 32-36. DOI: 10.7185/geochemlet.1816
Delarue F., Robert F., Tartese R., Sugitani K., Tang Q., Duhamel R., Pont S. and Xiao S. (2018b) Can NanoSIMS probe quantitatively the geochemical composition of ancient organic-walled microfossils? A case study from the early Neoproterozoic Liulaobei Formation. Precambrian Res. 311, 65-73. DOI: 10.1016/j.precamres.2018.03.003.
Demoulin C. F., Lara Y. J., Cornet L., Francois C., Baurain D., Wilmotte A. and Javaux E. J. (2019) Cyanobacteria evolution: Insight from the fossil record. Free Radic. Biol. Med. 140, 206-223. DOI: 10.1016/j.freeradbiomed.2019.05.007.
Demoulin C. F., Sforna M. C., Lara Y. J., Cornet Y., Somogyi A., Medjoubi K., Grolimund D., Sanchez D. F., Tachoueres R. T., Addad A., Fadel A., Compere P. and Javaux E. J. (2024) Polysphaeroides filiformis, a proterozoic cyanobacterial microfossil and implications for cyanobacteria evolution. iScience 27. DOI: 10.1016/j.isci.2024.108865
Dodd M. S., Papineau D., Grenne T., Slack J. F., Rittner M., Pirajno F., O’Neil J. and Little C. T. S. (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60-64. DOI: 10.1038/nature21377
Dunlop J. S. R., Milne V. A., Groves D. I. and Muir M. D. (1978) A new microfossil assemblage from the Archaean of Western Australia. Nature 274, 676-678. DOI: 10.1038/274676a0
Engel A. E. J., Nagy B., Nagy L. A., Engel C., Kremp G. O. W. and Drew C. M. (1968) Alga-Like Forms in Onverwacht Series , South Africa : Science. 161, 1005-1008. DOI: 10.1126/science.161.3845.1005
Fox S. W. and Yuyama S. (1963) Abiotic Production of Primite Protein and Formed Microparticles. Ann. New York Acad. Sci. 3971, 487-495. DOI: 10.1111/j.1749-6632.1963.tb13404.x
Furnes H., Banerjee N. R., Muehlenbachs K., Staudigel H. and De Wit M. (2004) Early Life Recorded in Archean Pillow Lavas. Science 304, 578-581. DOI: 10.1126/science.1095858
Garcia-Ruiz J. M., Hyde S. T. and Carnerup A. M. (2003) Self-Assembled Silica-Carbonate Structures and Detection of Ancient Microfossils Self-Assembled Silica-Carbonate Structures and. Science. DOI: 10.1126/science.1090163
Garcia-Ruiz J. M., van Zuilen M. A. and Bach W. (2020) Mineral self-organization on a lifeless planet. Phys. Life Rev. 34-35, 62-82. DOI: 10.1016/j.plrev.2020.01.001.
Glikson M., Duck L. J., Golding S. D., Hofmann A., Bolhar R., Webb R., Baiano J. C. F. and Sly L. I. (2008) Microbial remains in some earliest Earth rocks: Comparison with a potential modern analogue. Precambrian Res. 164, 187-200. DOI: 10.1016/j.precamres.2008.05.002
Glunk, C., Dupraz, C., Braissant, O., Gallagher, K.L., Verrecchia, E.P., Visscher, P.T. (2011) Microbially mediated carbonate precipitation in a hypersaline lake, Big Pond (Eleuthera, Bahamas). Sedimentology 58, 720-736. https://doi.org/10.1111/j.1365-3091.2010.01180.x
Gong J., Myers K. D., Munoz-Saez C., Homann M., Rouillard J., Wirth R., Schreiber A., van Zuilen M. A., Gao S., Huang F., Wang Y. and Gao W. (2020) Formation and Preservation of Microbial Palisade Fabric in Silica Deposits from El Tatio, Chile. Astrobiology 17, 500-524. DOI: 10.1089/ast.2019.2025
Grey K. and Sugitani K. (2009) Palynology of Archean microfossils (c. 3.0Ga) from the Mount Grant area, Pilbara Craton, Western Australia: Further evidence of biogenicity. Precambrian Res. 173, 60-69. DOI: 10.1016/j.precamres.2009.02.003
Grey K. and Willman S. (2009) Taphonomy of Ediacaran acritarchs from Australia: Significance for taxonomy and biostratigraphy. Palaios 24, 239-256. DOI: 10.2110/palo.2008.p08-020r
Grosch E. G. (2019) Metamorphic processes preserved in early archean supracrustal rocks of the barberton greenstone belt, South Africa. Geol. Soc. Spec. Publ. 478, 315-334. DOI: 10.1144/SP478.15
Grosch E. G. and McLoughlin N. (2014) Reassessing the biogenicity of Earth’s oldest trace fossil with implications for biosignatures in the search for early life. Proc. Natl. Acad. Sci. U. S. A. 111, 8380-8385. DOI: 10.1073/pnas.1402565111
Grotzinger J. R. and Knoll A. H. (1999) Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27, 313-358. DOI: 10.1146/annurev.earth.27.1.313
Gueneli N., McKenna A. M., Ohkouchi N., Boreham C. J., Beghin J., Javaux E. J. and Brocks J. J. (2018) 1.1-Billion-Year-Old Porphyrins Establish a Marine Ecosystem Dominated By Bacterial Primary Producers. Proc. Natl. Acad. Sci. U. S. A. 115, E6978-E6986. DOI: 10.1073/pnas.1803866115
Heiken G. (1974) Atlas of Volcanic Ash. Smithson. Contrib. to Earth Sci., 1-101. DOI: 10.5479/si.00810274.12.1
Hesse R. (1989) Silica diagenesis: origin of inorganic and replacement cherts. 26, 253-284. DOI: 10.1016/0012-8252(89)90024-X.
Hickman-Lewis K., Cavalazzi B., Foucher F. and Westall F. (2018) Most ancient evidence for life in the Barberton greenstone belt: Microbial mats and biofabrics of the ∼3.47 Ga Middle Marker horizon. Precambrian Res. 312, 45-67. DOI: 10.1016/j.precamres.2018.04.007.
Hickman-Lewis K., Cavalazzi B., Giannoukos K., D’Amico L., Vrbaski S., Saccomano G., Dreossi D., Tromba G., Foucher F., Brownscombe W., Smith C. L. and Westall F. (2023) Advanced two and three-dimensional insights into Earth’s oldest stromatolites (ca. 3.5 Ga): Prospects for the search for life on Mars. Geology 51, 33-38. DOI: 10.1130/G50390.1
Hickman-Lewis K., Westall F. and Cavalazzi B. (2020) Diverse communities of Bacteria and Archaea flourished in Palaeoarchaean (3.5-3.3 Ga) microbial mats. Palaeontology 63, 1007-1033. DOI: 10.1111/pala.12504
Hickman-Lewis K., Westall F. and Cavalazzi B. (2019) Traces of Early Life From the Barberton Greenstone Belt, South Africa, Earth's Oldest Rocks (Second Edition), Elsevier, Chapter 42, 1029-1058, DOI: 10.1016/B978-0-444-63901-1.00042-3.
Hickman A. H. (2023) Archean Evolution of the Pilbara Craton and Fortescue Basin., Springer International Publishing, Cham. DOI: 10.1007/978-3-031-18007-1.
Hofmann A. H. and Bolhar R. (2007) Carbonaceous cherst in the Barberton greenstone belt and their significance for the study of early life in the Archean record. Astrobiology 7, 355-388. DOI: 10.1089/ast.2005.0288
Hofmann H. J. (1976) Precambrian microflora, Belcher Islands, Canada: Significance and systematics. J. Paleontol. 50, 1040-1073. http://www.jstor.org/stable/1303547.
Hofmann H. J. (1972) Precambrian remains in Canada: fossils, dubiofossils, and pseudofossils. In Proceeding of the 24th International Geological Congress, Section pp. 20-30.
Hofmann H. J., Grey K., Hickman A. H. and Thorpe R. I. (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Bull. Geol. Soc. Am. 111, 1256-1262. DOI: 10.1130/0016-7606(1999)111<1256:OOGCSI>2.3.CO;2
Homann M. (2019) Earliest life on Earth: Evidence from the Barberton Greenstone Belt, South Africa. Earth-Science Rev. 196, 102888.DOI: 10.1016/j.earscirev.2019.102888.
Homann M. and Heubeck C. (2021) A comment on “Metamorphic origin of anastomosing and wavy laminas overprinting putative microbial deposits from the 3.22 Ga Moodies Group (Barberton Greenstone Belt).” Precambrian Res. 365, 106395. DOI: 10.1016/j.precamres.2021.106395
Homann, M., Heubeck, C., Airo, A., Tice, M.M., 2015. Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton Greenstone Belt, South Africa). Precambrian Research 266, 47-64. doi:10.1016/j.precamres.2015.04.018.
Homann M., Sansjofre P., van Zuilen M. A., Heubeck C., Gong J., Killingsworth B., Foster I. S., Airo A., Van Kranendonk M. J., Ader M. and Lalonde S. (2018) Microbial life and biogeochemical cycling on land 3,220 million years ago. Nat. Geosci. 11, 665-671. DOI: 10.1038/s41561-018-0190-9
House, C.H., Oehler, D.Z., Sugitani, K, Mimura, K, 2013. Carbon isotopic analyses of ca. 3.0 Ga microstructures imply planktonic autotrophs inhabited Earth’s early oceans. Geology 41 (6), 651-654. doi:10.1130/g34055.1.
Javaux E. J. (2019) Challenges in evidencing the earliest traces of life. Nature 572, 451-460. DOI: 10.1038/s41586-019-1436-4
Javaux E. J. (2022) Pseudofossil. In Encyclopedia of Astrobiology Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 1-1. DOI: 10.1007/978-3-642-27833-4_1306-4.
Javaux E. J. and Benzerara K. (2009) Microfossils. Comptes Rendus - Palevol 8, 605-615. DOI: 10.1016/j.crpv.2009.04.004
Javaux E. J., Knoll A. H. and Walter M. R. (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig. Life Evol. Biosph. 33, 75-94. DOI: 10.1023/A:1023992712071
Javaux E. J., Knoll A. H. and Walter M. R. (2004) TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2, 121-132. DOI: 10.1111/j.1472-4677.2004.00027.x
Javaux E. J. and Lepot K. (2018) The Paleoproterozoic fossil record: Implications for the evolution of the biosphere during Earth’s middle-age. Earth-Science Rev. 176, 68-86. Available at: DOI: 10.1016/j.earscirev.2017.10.001.
Javaux E. J., Marshall C. P. and Bekker A. (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463, 934-938. DOI: 10.1038/nature08793.
Johannessen K. C., McLoughlin N., Vullum P. E. and Thorseth I. H. (2020) On the biogenicity of Fe-oxyhydroxide filaments in silicified low-temperature hydrothermal deposits: Implications for the identification of Fe-oxidizing bacteria in the rock record. Geobiology 18, 31-53. DOI: 10.1111/gbi.12363.
Jones B. and Renaut R. W. (2007) Microstructural changes accompanying the opal-A to opal-CT transition: new evidence from the siliceous sinters of Geysir, Haukadalur, Iceland. Sedimentology 54, 921-948. DOI: 10.1111/j.1365-3091.2007.00866.x.
Jordan S. F., Rammu H., Zheludev I. N., Hartley A. M., Marechal A. and Lane N. (2019) Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nat. Ecol. Evol. 3, 1705-1714. DOI: 10.1038/s41559-019-1015-y.
Kazmierczak J. and Altermann W. (2002) Neoarchean Biomineralization by Benthic Cyanobacteria. Science 298, 2351-2351. DOI: 10.1126/science.1075933.
Kazmierczak J., Altermann W., Kremer B., Kempe S. and Eriksson P. G. (2009) Mass occurrence of benthic coccoid cyanobacteria and their role in the production of Neoarchean carbonates of South Africa. Precambrian Res. 173, 79-92. DOI: 10.1016/j.precamres.2009.02.002.
Kazmierczak J. and Kremer B. (2009) Thermally Altered Silurian Cyanobacterial Mats: A Key to Earth’s Oldest Fossils. Astrobiology 9, 731-743. DOI: 10.1089/ast.2008.0332.
Kazmierczak J., Kremer B., Altermann W. and Franchi I. (2016) Tubular microfossils from ∼2.8 to 2.7 Ga-old lacustrine deposits of South Africa: A sign for early origin of eukaryotes? Precambrian Res. 286, 180-194. DOI: 10.1016/j.precamres.2016.10.001.
Kempe A., Wirth R., Altermann W., Stark R. W., Schopf J. W. and Heckl W. M. (2005) Focussed ion beam preparation and in situ nanoscopic study of Precambrian acritarchs. Precambrian Res. 140, 36-54. DOI: 10.1016/j.precamres.2005.07.002.
Kile D. (2002) Occurrence and Genesis of Thunder Eggs Containing Plume and Moss Agate. Rocks Miner. 77, 252-268. DOI: 10.1080/00357529.2002.9925643.
Kiyokawa S., Ito T., Ikehara M. and Kitajima F. (2006) Middle Archean volcano-hydrothermal sequence: Bacterial microfossil-bearing 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia. Bull. Geol. Soc. Am. 118, 3-22. DOI: 10.1130/B25748.1.
Klein C., Beukes N. J. and Schopf J. W. (1987) Filamentous microfossils in the early proterozoic transvaal supergroup: their morphology, significance, and paleoenvironmental setting. Precambrian Res. 36, 81-94. DOI: 10.1016/0301-9268(87)90018-0.
Knoll A. H. and Barghoorn E. S. (1974) Ambient Pyrite in Precambrian Chert: New Evidence and a Theory. Proc. Natl. Acad. Sci. USA 71, 2329-2331. DOI: 10.1073/pnas.71.6.2329.
Knoll A. H. and Barghoorn E. S. (1976) Archean Microfossils Showing Cell Division from the. Science. 198, 396-398. DOI: 10.1007/BF00927937.
Knoll A. H., Barghoorn E. S. and Awramik S. M. (1978) New Microorganisms from the Aphebian Gunflint Iron Formation, Ontario. J. Paleontol. 52, 976-992. https://www.jstor.org/stable/1303843.
Knoll A. H., Bergmann K. D. and Strauss J. V (2016) Life: the first two billion years. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150493. DOI: 10.1098/rstb.2015.0493.
Knoll A. H. and Golubic S. (1992) Proterozoic and Living Cyanobacteria. Early Org. Evol., 450-462. DOI: 10.1007/978-3-642-76884-2_35.
Knoll A. H., Strother P. K. and Rossi S. (1988) Distribution and diagenesis of microfossils from the lower proterozoic duck creek dolomite, Western Australia. Precambrian Res. 38, 257-279. DOI: 10.1016/0301-9268(88)90005-8
Kohler I. and Heubeck C. (2019) Microbial-mat-associated tephra of the Archean Moodies Group, Barberton Greenstone Belt (BGB), South Africa: Resemblance to potential biostructures and ecological implications. South African J. Geol. 122, 221-236. DOI: 10.25131/sajg.122.0015
Konhauser K. O., Jones B., Reysenbach A.-L. and Renaut R. W. (2003) Hot spring sinters: keys to understanding Earth’s earliest life forms. Can. J. Earth Sci. 40, 1713-1724. DOI: 10.1139/e03-059
Kozawa T., Sugitani K., Oehler D. Z., House C. H., Saito I., Watanabe T. and Gotoh T. (2019) Early Archean planktonic mode of life: Implications from fluid dynamics of lenticular microfossils. Geobiology 17, 113-126. DOI: 10.1111/gbi.12319
Kremer B. and Kazmierczak J. (2017) Cellularly preserved microbial fossils from ∼3.4 Ga deposits of South Africa: A testimony of early appearance of oxygenic life? Precambrian Res. 295, 117-129. DOI: 10.1016/j.precamres.2017.04.023
Kremer B., Kazmierczak J. and Kempe S. (2019) Authigenic replacement of cyanobacterially precipitated calcium carbonate by aluminium-silicates in giant microbialites of Lake Van (Turkey). Sedimentology 66, 285-304. DOI: 10.1111/sed.12529
Ledevin M., Arndt N., Simionovici A., Jaillard E. and Ulrich M. (2014) Silica precipitation triggered by clastic sedimentation in the Archean : New petrographic evidence from cherts of the Kromberg type section , South Africa. Precambrian Res. 255, 316-334. DOI: 10.1016/j.precamres.2014.10.009.
Lepot K. (2021) Microfossils, Analytical Techniques. In Encyclopedia of Astrobiology Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 1-16. DOI: 10.1007/978-3-642-27833-4_1711-4.
Lekele Baghekema S. G., Lepot K., Riboulleau A., Fadel A., Trentesaux A. and El Albani A. (2017) Nanoscale analysis of preservation of ca. 2.1 Ga old Francevillian microfossils, Gabon. Precambrian Res. 301, 1-18. DOI: 10.1016/j.precamres.2017.08.024.
Lepot K. (2020) Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth-Science Rev. 209, 103296. DOI: 10.1016/j.earscirev.2020.103296.
Lepot K., Addad A., Knoll A. H., Wang J., Troadec D., Beche A. and Javaux E. J. (2017) Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation. Nat. Commun. 8, 14890. DOI: ncomms14890.
Lepot K., Benzerara K., Brown G. E. and Philippot P. (2008) Microbially influenced formation of 2,724-million-year-old stromatolites. Nat. Geosci. 1, 118-121. DOI: 10.1038/ngeo107
Lepot K., Benzerara K. and Philippot P. (2011) Biogenic versus metamorphic origins of diverse microtubes in 2.7Gyr old volcanic ashes: Multi-scale investigations. Earth Planet. Sci. Lett. 312, 37-47. DOI: 10.1016/j.epsl.2011.10.016.
Lepot K., Benzerara K., Rividi N., Cotte M., Brown G. E. and Philippot P. (2009a) Organic matter heterogeneities in 2.72 Ga stromatolites: Alteration versus preservation by sulfur incorporation. Geochim. Cosmochim. Acta 73, 6579-6599. DOI: 10.1016/j.gca.2009.08.014
Lepot K., Compere P., Gerard E., Namsaraev Z., Verleyen E., Tavernier I., Hodgson D. A., Vyverman W., Gilbert B., Wilmotte A. and Javaux E. J. (2014) Organic and mineral imprints in fossil photosynthetic mats of an East Antarctic lake. Geobiology 12, 424-450. DOI: 10.1111/gbi.12096
Lepot K., Philippot P., Benzerara K. and Wang G. Y. (2009b) Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt. Geobiology 7, 393-402. DOI: 10.1111/j.1472-4669.2009.00208.x
Lepot K., Williford K. H., Philippot P., Thomazo C., Ushikubo T., Kitajima K., Mostefaoui S. and Valley J. W. (2019) Extreme 13C-depletions and organic sulfur content argue for S-fueled anaerobic methane oxidation in 2.72 Ga old stromatolites. Geochim. Cosmochim. Acta 244, 522-547. DOI: 10.1016/j.gca.2018.10.014
Lepot K., Williford K. H., Ushikubo T., Sugitani K., Mimura K., Spicuzza M. J. and Valley J. W. (2013) Texture-specific isotopic compositions in 3.4Gyr old organic matter support selective preservation in cell-like structures. Geochim. Cosmochim. Acta 112, 66-86. DOI: 10.1016/j.gca.2013.03.004.
Li J., Liu P., Menguy N., Zhang X., Wang J., Benzerara K., Feng L., Sun L., Zheng Y., Meng F., Gu L., Leroy E., Hao J., Chu X. and Pan Y. (2022) Intracellular silicification by early-branching magnetotactic bacteria. Sci. Adv. 8, 1-13.
Liang Y., Hints O., Tang P., Cai C., Goldman D., Nolvak J., Tihelka E., Pang K., Bernardo J. and Wang W. (2020) Fossilized reproductive modes reveal a protistan affinity of Chitinozoa. Geology 48, 1200-1204. DOI: 10.1126/sciadv.abn6045
Maliva R. G., Knoll A. H. and Simonson B. M. (2005) Secular change in the Precambrian silica cycle: Insights from chert petrology. Bull. Geol. Soc. Am. 117, 835-845. DOI: 10.1130/B25555.1
Marshall C. P., Emry J. R. and Marshall A. O. (2011) Haematite pseudomicrofossils present in the 3.5-billion-year-old Apex Chert. Nat. Geosci. 4, 240-243. DOI: 10.1038/ngeo1084.
Marshall C. P., Love G. D., Snape C. E., Hill A. C., Allwood A. C., Walter M. R., Van Kranendonk M. J., Bowden S. A., Sylva S. P. and Summons R. E. (2007) Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia. Precambrian Res. 155, 1-23. DOI: 10.1016/j.precamres.2006.12.014
Matsuoka Y. and Monteiro A. (2018) Melanin Pathway Genes Regulate Color and Morphology of Butterfly Wing Scales. Cell Rep. 24, 56-65. DOI: 10.1016/j.celrep.2018.05.092
McCollom T. M. and Seewald J. S. (2001) A reassessment of the potential for reduction of dissolved CO 2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta 65, 3769-3778. DOI: 10.1016/S0016-7037(01)00655-X
McCollom T. M. and Seewald J. S. (2006) Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet. Sci. Lett. 243, 74-84. DOI: 10.1016/j.epsl.2006.01.027
McMahon S. (2019) Earth’s earliest and deepest purported fossils may be iron-mineralized chemical gardens. Proc. R. Soc. B Biol. Sci. 286, 20192410. DOI: 10.1098/rspb.2019.2410.
McMahon S. and Cosmidis J. (2022) False biosignatures on Mars: anticipating ambiguity. J. Geol. Soc. London. 179. DOI: 10.1144/jgs2021-050.
McMahon S., Ivarsson M., Wacey D., Saunders M., Belivanova V., Muirhead D., Knoll P., Steinbock O. and Frost D. A. (2021) Dubiofossils from a Mars-analogue subsurface palaeoenvironment: The limits of biogenicity criteria. Geobiology 19, 473-488. DOI: 10.1111/gbi.12445
Mendelson C. V. and Schopf J. W. (1992) Proterozoic and Selected Early Cambrian Microfossils and Microfossil-Like Objects. In The Proterozoic Biosphere Cambridge University Press. pp. 865-952. DOI: 10.1017/CBO9780511601064.024
Mitchell A. J. and Wimpenny J. W. T. (1997) The effects of agar concentration on the growth and morphology of submerged colonies of motile and non-motile bacteria. J. Appl. Microbiol. 83, 76-84. DOI: 10.1046/j.1365-2672.1997.00192.x
Monty C. L. V. (1976) The origin and development of cryptalgal fabrics. Stromatolites, Developments in Sedimentology 20, Elsevier, 193-249.
Moore K. R., Gong J., Pajusalu M., Skoog E. J., Xu M., Feliz Soto T., Sojo V., Matreux T., Baldes M. J., Braun D., Williford K. and Bosak T. (2021) A new model for silicification of cyanobacteria in Proterozoic tidal flats. Geobiology 19, 438-449. DOI: 10.1111/gbi.12447
Nabhan S., Kah L. C., Mishra B., Pollok K., Manning-Berg A. R. and van Zuilen M. A. (2021) Structural and chemical heterogeneity of Proterozoic organic microfossils of the ca. 1 Ga old Angmaat Formation, Baffin Island, Canada. Geobiology 19, 557-584. DOI: 10.1111/gbi.12463
Nims C., Lafond J., Alleon J., Templeton A. S. and Cosmidis J. (2021) Organic biomorphs may be better preserved than microorganisms in early Earth sediments. Geology 49, 629-634. DOi: 10.1130/G48152.1
Noffke N., Christian D., Wacey D. and Hazen R. M. (2013) Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia. Astrobiology 13. DOI: 10.1089/ast.2013.1030
Noffke, N., Erikson, K.A., Hazen, R.M., Simpson, E.L., 2006. A new window into Early Archean life: Microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34 (4), 253. doi:10.1130/G22246.1.
Oehler, D.Z. (1976) Transmission electron microscopy of organic microfossils from the late Precambrian Bitter Springs Formation of Australia: techniques and survey of preserved ultrastructure. J. Paleontol. 50, 90-106.
Oehler J. H. (1976) Experimental studies in Precambrian paleontology: Structural and chemical changes in blue-green algae during simulated fossilization in synthetic chert. Geol. Soc. Am. Bull. 87, 117. DOI: 10.1130/0016-7606(1976)87<117:ESIPPS>2.0.CO;2
Oehler D. Z., Robert F., Mostefaoui S., Meibom A., Selo M. and McKay D. S. (2006) Chemical Mapping of Proterozoic Organic Matter at Submicron Spatial Resolution. Astrobiology 6, 838-850. DOI: 10.1089/ast.2006.6.838.
Oehler D. Z., Robert F., Walter M. R., Sugitani K., Meibom A., Mostefaoui S. and Gibson E. K. (2010) Diversity in the Archean Biosphere: New Insights from NanoSIMS. Astrobiology 10, 413-424. DOI: 10.1089/ast.2009.0426.
Oehler D. Z., Walsh M. M., Sugitani K., Liu M. C. and House C. H. (2017) Large and robust lenticular microorganisms on the young Earth. Precambrian Res. 296, 112-119. DOI: 10.1016/j.precamres.2017.04.031.
Olcott Marshall A., Jehlicka J., Rouzaud J. N. and Marshall C. P. (2013) Multiple generations of carbonaceous material deposited in Apex chert by basin-scale pervasive hydrothermal fluid flow. Gondwana Res. 25, 284-289. DOI: 10.1016/j.gr.2013.04.006
Olempska E. and Wacey D. (2016) Ambient inclusion trails in Palaeozoic crustaceans (Phosphatocopina and Ostracoda). Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 949-958. DOI: 10.1016/j.palaeo.2015.10.052
Osterhout J. T., Schopf J. W., Williford K. H., McKeegan K. D., Kudryavtsev A. B. and Liu M. C. (2021) Carbon isotopes of Proterozoic filamentous microfossils: SIMS analyses of ancient cyanobacteria from two disparate shallow-marine cherts. Geomicrobiol. J. 38, 719-731. DOI: 10.1080/01490451.2021.1939813
Papineau D., She Z. and Dodd M. S. (2017) Chemically-oscillating reactions during the diagenetic oxidation of organic matter and in the formation of granules in late Palaeoproterozoic chert from Lake Superior. Chem. Geol. 470, 33-54. DOI: 10.1016/j.chemgeo.2017.08.021
Papineau D., She Z., Dodd M. S., Iacoviello F., Slack J. F., Hauri E., Shearing P. and Little C. T. S. (2022) Metabolically diverse primordial microbial communities in Earth’s oldest seafloor-hydrothermal jasper. Sci. Adv. 8. DOI: 10.1126/sciadv.abm2296
Parke M., Boalch G. T., Jowett R. and Harbour D. S. (1978) The Genus Pterosperma (Prasinophyceae): Species With a Single Equatorial Ala. J. Mar. Biol. Assoc. United Kingdom 58, 239-276. DOI: 10.1017/S0025315400024528
Pearson A. (2010) Pathways of Carbon Assimilation and Their Impact on Organic Matter Values δ13C. In Handbook of Hydrocarbon and Lipid Microbiology (ed. K. N. Timmis). Springer Berlin Heidelberg, Berlin, Heidelberg. DOI: 10.1007/978-3-540-77587-4
Pentecost A., Jones B. and Renaut R. W. (2003) What is a hot spring? Can. J. Earth Sci. 40, 1443-1446. DOI: 10.1139/e03-083
Pflug H. D. (1967) Structured organic remains from the Fig Tree Series (Precambrian) of the Barberton mountain land (South Africa). Rev. Palaeobot. Palynol. 5, 9-29. DOI: 10.1016/0034-6667(67)90205-9
Pinti D. L., Mineau R. and Clement V. (2009) Hydrothermal alteration and microfossil artefacts of the 3,465-million-year-old Apex chert. Nat. Geosci. 2, 640-643. DOI: 10.1038/ngeo601
Rasmussen B. (2000) Filamentous microfossils in a volcanogenic massive sulphide deposit. Nature 405, 676-679. DOI: 10.1038/35015063
Rasmussen B. and Muhling J. R. (2019a) Evidence for widespread oil migration in the 1.88 Ga Gunflint Formation, Ontario, Canada. Geology 47, 899-903. DOI: 10.1130/G46469.1
Rasmussen B. and Muhling J. R. (2019b) Organic-rich microfossils produced by oil infiltration of hollow silicified bacteria: Evidence from the ca. 340 Ma Red Dog Zn-Pb deposit, Alaska. Geology 47, 1107-1111. DOI: 10.1130/G46346.1
Rasmussen B. and Muhling J. R. (2023) Organic carbon generation in 3.5-billion-year-old basalt-hosted seafloor hydrothermal vent systems. Sci. Adv. 9, 1-13. DOI: 10.1126/sciadv.add7925
Rasmussen B., Muhling J. R. and Fischer W. W. (2021) Ancient Oil as a Source of Carbonaceous Matter in 1.88-Billion-Year-Old Gunflint Stromatolites and Microfossils. Astrobiology 21, 655-672. DOI: 10.1089/ast.2020.2376
Ross C. S. (1962) Microlites in glassy volcanic rocks. Am. Mineral. 47, 723-740.
Rouillard J., Garcia-Ruiz J. M., Gong J. and van Zuilen M. A. (2018) A morphogram for silica-witherite biomorphs and its application to microfossil identification in the early earth rock record. Geobiology 16, 279-296. DOI: 10.1111/gbi.12278
Rouillard J., Garcia-Ruiz J. M., Kah L., Gerard E., Barrier L., Nabhan S., Gong J. and van Zuilen M. A. (2020) Identifying microbial life in rocks: Insights from population morphometry. Geobiology 18, 282-305. DOI: 10.1111/gbi.12377.
Rouillard J., van Zuilen M. A., Pisapia C. and Garcia-Ruiz J. M. (2021) An Alternative Approach for Assessing Biogenicity. Astrobiology 21, 151-164. DOI: 10.1089/ast.2020.2282
Saitoh M., Olivier N., Garcon M., Boyet M., Thomazo C., Alleon J., Moyen J.-F., Motto-Ros V. and Marin-Carbonne J. (2022) Reply to comment on “Metamorphic origin of anastomosing and wavy laminas overprinting putative microbial deposits from the 3.22 Ga Moodies Group (Barberton Greenstone Belt).” Precambrian Res. 373, 106624.
Saitoh M., Olivier N., Garcon M., Boyet M., Thomazo C., Alleon J., Moyen J. F., Motto-Ros V. and Marin-Carbonne J. (2021) Metamorphic origin of anastomosing and wavy laminas overprinting putative microbial deposits from the 3.22 Ga Moodies Group (Barberton Greenstone Belt). Precambrian Res. 362, 106306. DOI: 10.1016/j.precamres.2021.106306.
Sasaki K., Ishida A., Takahata N., Sano Y. and Kakegawa T. (2022) Evolutionary diversification of paleoproterozoic prokaryotes: New microfossil records in 1.88 Ga Gunflint Formation. Precambrian Res. 380, 106798. DOI: 10.1016/j.precamres.2022.106798.
Schopf J. W. (1976) Are the oldest fossils, fossils? Orig. Life 7, 19-36. DOI: 10.1007/BF01218511.
Schopf J. W. (2006) Fossil evidence of Archaean life. Philos. Trans. R. Soc. B Biol. Sci. 361, 869-885. DOI: 10.1098/rstb.2006.1834
Schopf J. W. (1993) Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life. Science. 260, 640-646. DOI: 10.1126/science.260.5108.640
Schopf, J.W., Kudryavtsev, A.B., 2012. Biogenicity of Earth’s earliest fossils: A resolution of the controversy. Gondwana Research 22 (3-4), 761-771. doi:10.1016/j.gr.2012.07.003.
Schopf J. W. and Kudryavtsev A. B. (2009) Confocal laser scanning microscopy and Raman imagery of ancient microscopic fossils. Precambrian Res. 173, 39-49. DOI: 10.1016/j.precamres.2009.02.007
Schopf, J. William, Kudryavtsev, Anatoliy, B., Czaja, Andrew, D., Tripathi, Abhishek, B., 2007. Evidence of Archean life: Stromatolites and microfossils. Precambrian Research 158, 141-155. doi:10.1016/j.precamres.2007.04.009.
Schopf J. W., Kudryavtsev A. B., Osterhout J. T., Williford K. H., Kitajima K., Valley J. W. and Sugitani K. (2017) An anaerobic ∼3400 Ma shallow-water microbial consortium: Presumptive evidence of Earth’s Paleoarchean anoxic atmosphere. Precambrian Res. 299, 309-318. DOI: 10.1016/j.precamres.2017.07.021
Schopf J. W., Kudryavtsev A. B., Sugitani K. and Walter M. R. (2010) Precambrian microbe-like pseudofossils: A promising solution to the problem. Precambrian Res. 179, 191-205. DOI: 10.1016/j.precamres.2010.03.003
Schopf J. W. and Packer B. M. (1987) Early archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science. 237, 70-73. DOI: 10.1126/science.11539686
Schopf J. W., Sergeev V. N. and Kudryavtsev A. B. (2015) A new approach to ancient microorganisms: taxonomy, paleoecology, and biostratigraphy of the Lower Cambrian Berkuta and Chulaktau microbiotas of South Kazakhstan. J. Paleontol. 89, 695-729. DOI: 10.1017/jpa.2015.56
Schopf J. W., Tewari V. C. and Kudryavtsev A. B. (2008) Discovery of a new chert-permineralized microbiota in the Proterozoic Buxa Formation of the Ranjit window, Sikkim, northeast India, and its astrobiological implications. Astrobiology 8, 735-746. DOI: 10.1089/ast.2007.0184
Schopf J. W., Tripathi A. B. and Kudryavtsev A. B. (2006) Three-Dimensional Confocal Optical Imagery of Precambrian Microscopic Organisms. Astrobiology 6, 1-16. DOI: 10.1089/ast.2006.6.1
Schopf J. W. and Walter M. R. (1983) Archean microfossils: new evidence of ancient microbes. In Earth’s Earliest Biosphere: Its Origin and Evolution pp. 214-239. Princeton University Press, Princeton, N.J., pp. 214-239.
Sforna M. C., Loron C. C., Demoulin C. F., Francois C., Cornet Y., Lara Y. J., Grolimund D., Ferreira Sanchez D., Medjoubi K., Somogyi A., Addad A., Fadel A., Compere P., Baudet D., Brocks J. J. and Javaux E. J. (2022) Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae. Nat. Commun. 13, 1-8. DOI: 10.1038/s41467-021-27810-7
Sforna M. C., van Zuilen M. A. and Philippot P. (2014) Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia. Geochim. Cosmochim. Acta 124, 18-33. DOI: 10.1016/j.gca.2013.09.031
Shapiro R. S. and Konhauser K. O. (2015) Hematite-coated microfossils: Primary ecological fingerprint or taphonomic oddity of the Paleoproterozoic? Geobiology 13, 209-224. DOI: 10.1111/gbi.12127
Shen Y., Farquhar J., Masterson A., Kaufman A. J. and Buick R. (2009) Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet. Sci. Lett. 279, 383-391. DOI: 10.1016/j.epsl.2009.01.018
Shibuya T., Komiya T., Nakamura K., Takai K. and Maruyama S. (2010) Highly alkaline, high-temperature hydrothermal fluids in the early Archean ocean. Precambrian Res. 182, 230-238. DOI: 10.1016/j.precamres.2010.08.011.
Siever R. (1992) The silica cycle in the Precambrian. Geochim. Cosmochim. Acta 56, 3265-3272. DOI: 10.1016/0016-7037(92)90303-Z
Stefurak E. J. T., Lowe D. R., Zentner D. and Fischer W. W. (2014) Primary silica granules-A new mode of Paleoarchean sedimentation. Geology 42, 283-286. DOI: 10.1130/G35187.1
Su P. T., Liao C. T., Roan J. R., Wang S. H., Chiou A. and Syu W. J. (2012) Bacterial Colony from Two-Dimensional Division to Three-Dimensional Development. PLoS One 7, 1-10. DOI: 10.1371/journal.pone.0048098
Sugitani K. (2019) Early Archean (Pre-3.0 Ga) Cellularly Preserved Microfossils and Microfossil-Like Structures From the Pilbara Craton, Western Australia-A Review., Earth's Oldest Rocks (Second Edition), Chapter 41, 1007-1028, DOI: 10.1016/b978-0-444-63901-1.00041-1
Sugitani K., Grey K., Allwood A. C., Nagaoka T., Mimura K., Minami M., Marshall C. P., Van Kranendonk M. J. and Walter M. R. (2007) Diverse microstructures from Archaean chert from the Mount Goldsworthy-Mount Grant area, Pilbara Craton, Western Australia: Microfossils, dubiofossils, or pseudofossils? Precambrian Res. 158, 228-262. DOI: 10.1016/j.precamres.2007.03.006
Sugitani K., Grey K., Nagaoka T. and Mimura K. (2009a) Three-Dimensional Morphological and Textural Complexity of Archean Putative Microfossils from the Northeastern Pilbara Craton: Indications of Biogenicity of Large (>15 μ m) Spheroidal and Spindle-Like Structures. Astrobiology 9, 603-615. DOI: 10.1089/ast.2008.0268.
Sugitani K., Grey K., Nagaoka T., Mimura K. and Walter M. R. (2009b) Taxonomy and biogenicity of Archaean spheroidal microfossils (ca. 3.0 Ga) from the Mount Goldsworthy-Mount Grant area in the northeastern Pilbara Craton, Western Australia. Precambrian Res. 173, 50-59. DOI: 10.1016/j.precamres.2009.02.004.
Sugitani K., Kohama T., Mimura K., Takeuchi M., Senda R. and Morimoto H. (2018) Speciation of Paleoarchean Life Demonstrated by Analysis of the Morphological Variation of Lenticular Microfossils from the Pilbara Craton, Australia. Astrobiology 18, 1057-1070. DOI: 10.1089/ast.2017.1799
Sugitani K., Koichi M. and Walter M. R. (2011) Farrel Quartzite Microfossils in the Goldsworthy Greenstone Belt, Pilbara Craton, Western Australia. eds. V. Tewari and J. Seckbach, STROMATOLITES: Interaction of Microbes with Sediments. Springer. DOI: 10.1007/978-94-007-0397-1.
Sugitani K., Lepot K., Nagaoka T., Mimura K., Van Kranendonk M. J., Oehler D. Z. and Walter M. R. (2010) Biogenicity of Morphologically Diverse Carbonaceous Microstructures from the ca. 3400 Ma Strelley Pool Formation, in the Pilbara Craton, Western Australia. Astrobiology 10, 899-920. DOI: 10.1089/ast.2010.0513.
Sugitani K., Mimura K., Nagaoka T., Lepot K. and Takeuchi M. (2013) Microfossil assemblage from the 3400Ma Strelley Pool Formation in the Pilbara Craton, Western Australia: Results form a new locality. Precambrian Res. 226, 59-74. DOI: 10.1016/j.precamres.2012.11.005.
Sugitani K., Mimura K., Takeuchi M., Lepot K., Ito S. and Javaux E. J. (2015a) Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils. Geobiology 13, 507-521. DOI: 10.1111/gbi.12148.
Sugitani K., Mimura K., Takeuchi M., Yamaguchi T., Suzuki K., Senda R., Asahara Y., Wallis S. and Van Kranendonk M. J. (2015b) A Paleoarchean coastal hydrothermal field inhabited by diverse microbial communities: the Strelley Pool Formation, Pilbara Craton, Western Australia. Geobiology 13, 522-545. DOI: 10.1111/gbi.12150.
Tappan H. (1980) The Paleobiology of Plant Protists. https://lccn.loc.gov/80014675.
Tyler S. A. and Barghoorn E. S. (1954) Occurrence of Structurally Preserved Plants in Pre-Cambrian Rocks of the Canadian Shield. Science. 119, 606-608. DOI: 10.1126/science.119.3096.606.
Ueno Y., Isozaki Y. and McNamara K. J. (2006) Coccoid-Like Microstructures in a 3.0 Ga Chert from Western Australia. Int. Geol. Rev. 48, 78-88. DOI: 10.2747/0020-6814.48.1.78.
Ueno Y., Isozaki Y., Yurimoto H. and Maruyama S. (2001a) Carbon isotopic signatures of individual Archean microfossils(?) from Western Australia. Int. Geol. Rev. 43, 196-212. DOI: 10.1080/00206810109465008
Ueno Y., Maruyama S., Isozaki Y. and Yurimoto H. (2001b) Early Archean (ca. 3.5 Ga) microfossils and 13 C-depleted carbonaceous matter in the North Pole area, Western Australia: Field occurrence and geochemistry. Geochemistry Orig. Life. DOI: 10.1016/j.gca.2008.08.026
Ueno Y., Ono S., Rumble D. and Maruyama S. (2008) Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: New evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72, 5675-5691. DOI: 10.1016/j.gca.2008.08.026.
Varkouhi S., Papineau D. and Guo Z. (2022) Botryoidal quartz as an abiotic signature in Palaeoarchean cherts of the Pilbara Supergroup, Western Australia. Precambrian Res. 383, 106876. DOI: 10.1016/j.precamres.2022.106876.
van den Boorn S. H. J. M., van Bergen M. J., Nijman W. and Vroon P. Z. (2007) Dual role of seawater and hydrothermal fluids in Early Archean chert formation: Evidence from silicon isotopes. Geology 35, 939. DOI: 10.1130/G24096A.1
van Eldijk T. J. B., Wappler T., Strother P. K., van der Weijst C. M. H., Rajaei H., Visscher H. and van de Schootbrugge B. (2018) A Triassic-Jurassic window into the evolution of Lepidoptera. Sci. Adv. 4, 1-8. DOI: 10.1126/sciadv.1701568.
Van Kranendonk M. J. (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth-Science Rev. 74, 197-240. DOI: 10.1016/j.earscirev.2005.09.005
Van Kranendonk M. J., Philippot P., Lepot K., Bodorkos S. and Pirajno F. (2008) Geological setting of Earth’s oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Res. 167, 93-124. DOI: 10.1016/j.precamres.2008.07.003
van Zuilen M. A., Chaussidon M., Rollion-Bard C. and Marty B. (2007) Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: Isotopic, chemical and structural characteristics of individual microstructures. Geochim. Cosmochim. Acta 71, 655-669. DOI: 10.1016/j.gca.2006.09.029
Wacey D. (2009) ∼3,250 Ma, Fig Tree Group, Barberton, South Africa. In: Wacey, D. (eds) Early Life on Earth. Topics in Geobiology, vol 31. Springer, Dordrecht. pp. 215-219. DOI: 10.1007/978-1-4020-9389-0_16.
Wacey D., Battison L., Garwood R. J., Hickman-Lewis K. and Brasier M. D. (2017) Advanced analytical techniques for studying the morphology and chemistry of Proterozoic microfossils. Geol. Soc. Spec. Publ. 448, 81-104. DOI: 10.1144/SP448.4
Wacey D., Eiloart K. and Saunders M. (2019) Comparative multi-scale analysis of filamentous microfossils from the c. 850 Ma Bitter Springs Group and filaments from the c. 3460 Ma Apex chert. J. Geol. Soc. London. 176, 1247-1260. DOI: 10.1144/jgs2019-053.
Wacey D., Kilburn M. R., McLoughlin N., Parnell J., Stoakes C. A., Grovenor C. R. M. and Brasier M. D. (2008) Use of NanoSIMS in the search for early life on Earth: ambient inclusion trails in a c . 3400 Ma sandstone. J. Geol. Soc. London. 165, 43-53. DOI: 10.1144/0016-76492007-032.
Wacey D., Kilburn M. R., Saunders M., Cliff J. and Brasier M. D. (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat. Geosci. 4, 698-702. DOI: 10.1038/ngeo1238
Wacey D., Menon S., Green L., Gerstmann D., Kong C., McLoughlin N., Saunders M. and Brasier M. D. (2012) Taphonomy of very ancient microfossils from the ∼3400Ma Strelley Pool Formation and ∼1900Ma Gunflint Formation: New insights using a focused ion beam. Precambrian Res. 220-221, 234-250. DOI: 10.1016/j.precamres.2012.08.005
Wacey D., Noffke N., Cliff J., Barley M. E. and Farquhar J. (2015) Micro-scale quadruple sulfur isotope analysis of pyrite from the ∼3480Ma Dresser Formation: New insights into sulfur cycling on the early Earth. Precambrian Res. 258, 24-35. DOI: 10.1016/j.precamres.2014.12.012
Wacey D., Noffke N., Saunders M., Guagliardo P. and Pyle D. M. (2018a) Volcanogenic Pseudo-Fossils from the ∼3.48 Ga Dresser Formation, Pilbara, Western Australia. Astrobiology 18, 539-555. DOI: 10.1089/ast.2017.1734
Wacey D., Saunders M. and Kong C. (2018b) Remarkably preserved tephra from the 3430 Ma Strelley Pool Formation, Western Australia: Implications for the interpretation of Precambrian microfossils. Earth Planet. Sci. Lett. 487, 33-43. DOI: 10.1016/j.epsl.2018.01.021
Wacey D., Saunders M., Kong C., Brasier A. and Brasier M. D. (2016) 3.46 Ga Apex chert ‘microfossils’ reinterpreted as mineral artefacts produced during phyllosilicate exfoliation. Gondwana Res. 36, 296-313. DOI: 10.1016/j.gr.2015.07.010
Wacey D., Saunders M., Roberts M., Menon S., Green L., Kong C., Culwick T., Strother P. and Brasier M. D. (2014) Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes. Sci. Rep. 4, 5841. DOI: 10.1038/srep05841
Wacey D., Urosevic L., Saunders M. and George A. D. (2018c) Mineralisation of filamentous cyanobacteria in Lake Thetis stromatolites, Western Australia. Geobiology 16, 203-215. DOI: 10.1111/gbi.12272.
Walsh M. M. (1992) Microfossils and possible microfossils from the early archean onverwacht group, Barberton mountain land, South Africa. Precambrian Res. 54, 271-293. DOI: 10.1016/0301-9268(92)90074-X
Walsh M. M. and Lowe D. R. (1985) Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 314, 530-532. DOI: 10.1038/314530a0
Waterbury J. B. and Stanier R. Y. (1978) Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol. Rev. 42, 2-44. DOI: 10.1128/MMBR.42.1.2-44.1978
Westall F., Boni L. and Guerzoni E. (1995) The experimental silicification of microorganisms. Palaeontology 38, 495-528. https://www.palass.org/publications/palaeontology-journal/archive/38/3/article_pp495-528
Westall F. and Folk R. L. (2003) Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua Greenstone Belt: Implications for the search for life in ancient rocks. Precambrian Res. 126, 313-330. DOI: 10.1016/S0301-9268(03)00102-5
Westall F., Foucher F., Cavalazzi B., De Vries S. T., Nijman W., Pearson V., Watson J., Verchovsky A., Wright I., Rouzaud J. N., Marchesini D. and Anne S. (2011) Volcaniclastic habitats for early life on Earth and Mars: A case study from ∼3.5 Ga-old rocks from the Pilbara, Australia. Planet. Space Sci. 59, 1093-1106. DOI: 10.1016/j.pss.2010.09.006
Westall F., De Vries S. T., Nijman W., Rouchon V., Orberger B., Pearson V., Watson J., Verchovsky A., Wright I., Rouzaud J. N., Marchesini D. and Severine A. (2006) The 3.466 Ga “Kitty’s Gap Chert,” an early Archean microbial ecosystem. Spec. Pap. Geol. Soc. Am. 405, 105-131. DOI: 10.1130/2006.2405(07)
Westall F., De Wit M. J., Dann J., van der Gaast S., De Ronde C. E. J. and Gerneke D. (2001) Early archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Res. 106, 93-116. DOI: 10.1016/S0301-9268(00)00127-3
White A. J. R., Smith R. E., Nadoll P. and Legras M. (2014) Regional-scale metasomatism in the fortescue groupvolcanics, hamersley basin,Western Australia: Implications for hydrothermal ore systems. J. Petrol. 55, 977-1009. DOI: 10.1093/petrology/egu013
Williford K. H., Ushikubo T., Schopf J. W., Lepot K., Kitajima K. and Valley J. W. (2013) Preservation and detection of microstructural and taxonomic correlations in the carbon isotopic compositions of individual Precambrian microfossils. Geochim. Cosmochim. Acta 104, 165-182. DOI: 10.1016/j.gca.2012.11.005.
Yoshida H., Kuma R., Hasegawa H., Katsuta N., Sirono S. iti, Minami M., Nishimoto S., Takagi N., Kadowaki S. and Metcalfe R. (2021) Syngenetic rapid growth of ellipsoidal silica concretions with bitumen cores. Sci. Rep. 11, 1-11. DOI: 10.1038/s41598-021-83651-w.