ammonia; atmospheric ammonia detection; carbon nanotube sensors; electrochemical sensors; metal-oxide sensors; Ammonia detection; Ammonia gas sensors; Atmospheric ammonia; Atmospheric ammonia detection; Carbon nanotube sensor; Gas sensor arrays; High selectivity; High sensitivity; Metal oxide sensors; Nanotube sensors; Artificial Intelligence; Computer Science Applications; Sensory Systems; Instrumentation
Abstract :
[en] The purpose of this research is to evaluate the potential of different gas sensor arrays for small scale, in-situ atmospheric ammonia detection, to counterbalance the shortcomings of satellite atmospheric ammonia detection. In order to achieve this, one drone-based and 20 ground-based ammonia gas sensor arrays will be developed, aiming for the highest sensitivity & selectivity possible, amongst other important sensor characteristics. It is important to note that atmospheric ammonia concentration can differ significantly as a function of regionality and time. As a result, different types of ammonia gas sensors will be tested in both controlled laboratory and in-situ environments, in order to develop the best suited gas sensor arrays with high sensitivity & selectivity for ammonia, besides ensuring atmospheric ammonia detection over a large range of concentrations.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Rosiers, Mauri ; Université de Liège - ULiège > Faculté des Sciences > Doct. scienc. (sciences et gest. environ.) ; ULiège - Université de Liège > Sphères ; ULB - Université Libre de Bruxelles > Faculty of Sciences > Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing service (SQUARES)
Coheur, Pierre; ULB - Université Libre de Bruxelles > Faculty of Science > Affiliations ULB - Université Libre de Bruxelles > Faculty of Sciences > Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing service (SQUARES)
Clarisse, Lieven; ULB - Université Libre de Bruxelles > Faculty of Sciences > Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing service (SQUARES)
Van Damme, Martin; ULB - Université Libre de Bruxelles > Faculty of Sciences > Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing service (SQUARES)
Falzone, Claudia ; Université de Liège - ULiège > Sphères ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Sensing of Atmospheres and Monitoring (SAM)
Romain, Anne-Claude ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Sensing of Atmospheres and Monitoring (SAM)
Language :
English
Title :
Monitoring atmospheric ammonia with satellite and on-field gas sensor array measurement techniques
Publication date :
12 May 2024
Event name :
2024 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)
Event place :
Grapevine, Usa
Event date :
12-05-2024 => 15-05-2024
By request :
Yes
Main work title :
ISOEN 2024 - International Symposium on Olfaction and Electronic Nose, Proceedings
Publisher :
Institute of Electrical and Electronics Engineers Inc.
Van Damme, M., Clarisse, L., Franco, B., Sutton, M. A., Erisman, J. W., Kruit, R. W., Van Zanten, M., Hadji‐Lazaro, J., Hurtmans, D., Clerbaux, C., & Coheur, P. (2021). Global, regional and national trends of atmospheric ammonia derived from a decadal (2008–2018) satellite record. Environmental Research Letters, 16(5), 055017. https://doi.org/10.1088/1748-9326/abd5e0
Sutton, M. A., Reis, S., Riddick, S. N., Dragosits, U., Nemitz, E., Theobald, M. R., Tang, Y. S., Braban, C. F., Vieno, M., Dore, A. J., Mitchell, R. F., Wanless, S., Daunt, F., Fowler, D., Blackall, T. D., Milford, C., Fléchard, C., Loubet, B., Massad, R. S., . . . De Vries, W. (2013). Towards a climate-dependent paradigm of ammonia emission and deposition. Philosophical Transactions of The Royal Society, 368(1621), 20130166. https://doi.org/10.1098/rstb.2013.0166
McDuffie, E. E., Smith, S., O’Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E. A., Zheng, B., Crippa, M., Bräuer, M., & Martin, R. V. (2020). A Global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS). Earth System Science Data, 12(4), 3413–3442. https://doi.org/10.5194/essd-12-3413-2020
Clarisse, L., Franco, B., Van Damme, M., Di Gioacchino, T., Hadji‐Lazaro, J., Whitburn, S., Noppen, L., Hurtmans, D., Clerbaux, C., & Coheur, P. (2023). The IASI NH3 Version 4 product: Averaging kernels and improved consistency. Atmospheric Measurement Techniques, 16(21), 5009–5028. https://doi.org/10.5194/amt-16-5009-2023
Van Damme, M., Clarisse, L., Heald, C. L., Hurtmans, D., Ngadi, Y., Clerbaux, C., Dolman, A. J., Erisman, J. W., & Coheur, P. (2014). Global distributions, time series and error characterization of atmospheric ammonia (NH3) from IASI satellite observations. Atmospheric Chemistry and Physics, 14(6), 2905–2922. https://doi.org/10.5194/acp-14-2905-2014
Petrus, M., Popa, C., & Bratu, A. (2022). Ammonia concentration in ambient air in a Peri-Urban area using a laser photoacoustic spectroscopy detector. Materials, 15(9), 3182. https://doi.org/10.3390/ma15093182
Sinnott, S. B., & Andrews, R. (2001). Carbon nanotubes: synthesis, properties, and applications. Critical Reviews in Solid State and Materials Sciences, 26(3), 145–249. https://doi.org/10.1080/20014091104189
Peng, N., Zhang, Q., Lee, Y. C., Tan, O. K., & Marzari, N. (2008). Gate modulation in carbon nanotube field effect transistors-based NH3 gas sensors. Sensors and Actuators B: Chemical, 132(1), 191–195. https://doi.org/10.1016/j.snb.2008.01.025
Rigoni, F., Tognolini, S., Borghetti, P., Drera, G., Pagliara, S., Goldoni, A., & Sangaletti, L. (2014). Environmental monitoring of low-PPB ammonia concentrations based on single-wall carbon nanotube chemiresistor gas sensors: detection limits, response dynamics, and moisture effects. Procedia Engineering, 87, 716–719. https://doi.org/10.1016/j.proeng.2014.11.638
Kwak, D., Lei, Y., & Marić, R. (2019). Ammonia Gas Sensors: A Comprehensive Review. Talanta, 204, 713–730. https://doi.org/10.1016/j.talanta.2019.06.034
Bray, C. D., Battye, W., Aneja, V. P., Tong, D., Lee, P., & Tang, Y. (2018). Ammonia emissions from biomass burning in the continental United States. Atmospheric Environment, 187, 50–61. https://doi.org/10.1016/j.atmosenv.2018.05.052