No full text
Paper published in a book (Scientific congresses and symposiums)
On Minimal and Minimum Cylindrical Algebraic Decompositions
Michel, Lucas; Mathonet, Pierre; Zenaïdi, Naïm
2024In International Symposium on Symbolic and Algebraic Computation (ISSAC ’24)
Peer reviewed
 

Files


Full Text
No document available.

Send to



Details



Keywords :
cylindrical algebraic decomposition; Semi-algebraic set; minimal and minimum element; partially ordered set
Abstract :
[en] We consider cylindrical algebraic decompositions (CADs) as a tool for representing semi-algebraic subsets of $\mathbb{R}^n$. In this framework, a CAD $\mathscr{C}$ is adapted to a given set $S$ if $S$ is a union of cells of $\mathscr{C}$. Different algorithms computing an adapted CAD may produce different outputs, usually with redundant cell divisions. In this paper we analyse the possibility to remove the superfluous data. More precisely we consider the set CAD$(S)$ of CADs that are adapted to $S$, endowed with the refinement partial order and we study the existence of minimal and minimum elements in this poset. We show that for every semi-algebraic set $S$ of $\mathbb{R}^n$ and every CAD $\mathscr{C}$ adapted to $S$, there is a minimal CAD adapted to $S$ and smaller (i.e. coarser) than or equal to $\mathscr{C}$. Moreover, when $n=1$ or $n=2$, we strengthen this result by proving the existence of a minimum element in CAD$(S)$. Astonishingly for $n \geq 3$, there exist semi-algebraic sets whose associated poset of adapted CADs does not admit a minimum. We prove this result by providing explicit examples. We finally use a reduction relation on CAD$(S)$ to define an algorithm for the computation of minimal CADs. We conclude with a characterization of those semi-algebraic sets $S$ for which CAD$(S)$ has a minimum by means of confluence of the associated reduction system.
Disciplines :
Mathematics
Computer science
Author, co-author :
Michel, Lucas  ;  Université de Liège - ULiège > Département de mathématique > Géométrie différentielle
Mathonet, Pierre ;  Université de Liège - ULiège > Département de mathématique > Géométrie différentielle
Zenaïdi, Naïm  ;  Université de Liège - ULiège > Département de mathématique
Language :
English
Title :
On Minimal and Minimum Cylindrical Algebraic Decompositions
Publication date :
2024
Event name :
International Symposium on Symbolic and Algebraic Computation (ISSAC ’24)
Event place :
Raleigh, United States - North Carolina
Event date :
from 16 to 19 July 2024
Audience :
International
Main work title :
International Symposium on Symbolic and Algebraic Computation (ISSAC ’24)
Publisher :
ACM, New York, United States - New York
Peer review/Selection committee :
Peer reviewed
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
DFG - Deutsche Forschungsgemeinschaft
Funding number :
40019202
Available on ORBi :
since 30 May 2024

Statistics


Number of views
177 (24 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi