Amichot M., Castella C., Cuany A., Berge JB., Pauron D. (1992). Target modification as a molecular mechanism of pyrethroid resistance in Drosophila melanogaster. Pestic. Biochem. Physiol. 44, p. 189–190.
Amichot M., Castella C., Bergé JB., Pauron D. (1993). Transcriptions analysis of para gene by in situ hybridization and immunological characterization of its expression product in wild-type and mutant strains of Drosophila. Insect Biochem. Mol. Biol. 23, p. 381–390.
Avella M., Fournier D., Pralavorio M., Bergé JB. (1985). Sélection pour la résistance à la deltaméthrine d’une souche de Phytoseiulus persimilis. Agronomie 5, p. 177–180
Ayad H., Georghiou GP. (1975). Resistance to o rganophosphorate and carbamates in Anophelesalbimanus based on reduced sensitivity of acetylcholinesterase. J. Econ. Entomol. 68, p. 295–297.
Beeman RW., Schmidt BA. (1982). Biochemical and genetic aspects of malathion-specific resistance in the Indian meal Moth. J. Econ. Entomol. 75, p. 945–949.
Benezet HJ., Forgash AJ. (1972). Reduction of malathion penetration in houseflies pretreated with silicic acid. J. Econ. Entomol. 65, p. 895–896.
Bourguet D., Raymond M., Berrada S., Fournier D. (1997). Interaction between acetylcholinesterase and choline acetyltransferase – a hypothesis to explain unusual toxicological responses. Pestic. Sci. 51, p. 276–282.
Brodgon WG., Mcallister JC., Vulule J. (1997). Heme peroxydase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J. Am. Mosq. Control Assoc. 13, p. 233–237.
Bull DL., Whitten CJ. (1972). Factors influencing o rganophosphorus insecticide resistance in tobacco budworms. J. Org. Food Chem. 20, p. 561–564.
Brun A., Cuany A., Le Mouel T., Bergé JB., Amichot M. (1996). Inducibility of the Drosophila melanogaster cytochrome P-450 gene, CYP6A2, by phenobarbital in insecticide susceptible or resistant strains. Insect Biochem. Mol. Biol. 26, p. 697–703.
Cariño FA., Koener JF., Plapp FW., Feyereisen R. (1994). Constitutive overexpression of the cytochrome P-450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem. Mol. Biol. 24, p. 411–418.
Chaudry MQ. (1997). A review of mechanisms involved in the action of phosphine as an insecticide and phosphine resistance in stored-product insects. Pestic. Sci. 49, p. 213–219.
Cohen E. (1982). Studies on several microsomal enzymes in two strains of the flour beetle. Comp. Biochem. Physiol. 71b, p. 123–126.
Davidson G. (1953). Experiments on the effect of residual insecticides in houses against Anopheles gambiae and A. funestus. Bull. Entomol. Res. 44, p. 231–245.
Deng Y., Palmer CJ., Casida JE. (1991). House fly brain G A B A receptors: target for multiple classes of insecticides. Pestic. Biochem. Physiol. 41, p. 60–65.
Devonshire AL., Moore GD. (1982). A carboxylesterase with broad substrate specificity causes org a n ophosphorous, carbamates and pyrethroid resistance in peach-potato aphids. Pestic. Biochem. Physiol. 1 8, p. 235–246.
Dong K. (1997). A single amino acid change in the para sodium channel protein is associated with knockdownresistance (kdr) to pyrethroid insecticides in german cockroach. Insect Biochem. Mol. Biol. 27, p. 93–100.
El Bashir S., Oppenoorth FJ. (1969). Microsomal oxidations of organophosphate insecticides in some resistant strain of houseflies. Nature 223, p. 210.
Feyereisen R, Koenen JF, Farnsworth DE, Nebert DN (1989). Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly. Proc. Natl. Acad. Sci. USA 86, 1465-1469.
Field LM., Devonshire AL., Tylersmith C. (1996). Analysis of amplicons containing the esterase genes responsible for insecticide in Myzus persicae. Biochem. J. 313, p. 543–547.
Fisher CW., Mayer RT. (1984). Partial purification and characterization of phenobarbital-induced housefly cytochrome P-450. Arch. Insect. Biochem. Physiol. 1, p. 127–138.
Fournier D., Bride JM., Hoffmann F., Karch F. (1992a). Acetylcholinesterase: two types of modifications confer resistance to insecticide. J. Biol. Chem. 2 6 7, p. 14270–14274.
Fournier D., Bride JM., Poirie M., Bergé JB., Plapp FW. (1992b). Insect glutathione S-transferases: biochemical characterization of the major forms from housefliessusceptible and resistant to insecticides. J. Biol. Chem. 267, p. 1840–1845.
Fournier D., Mutero A. (1994). Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comp. Biochem. Physiol. 108 c, p. 19–31.
ffrench-Constant RH. (1994). The molecular and population genetics of cyclodiene insecticide resistance. Insect Biochem. Mol. Biol. 23, p. 335–345.
ffrench-Constant RH., Streichen JC., Rocheleau TA., Aronstein K., Roush RT. (1993). A single-amino acid substitution in a gamma-aminobutyric subtype A receptor locus is associated with cyclodiene insecticide resistance in Drosophila populations. Proc. Natl Acad. Sci. USA 90, p. 1957–1961.
Franciosa H., Bergé JB. (1995). Glutathione S-transferases in housefly (Musca domestica): location of GST-1 and G S T-2 families. Insect Biochem. Mol. Biol. 2 5, p. 311–317.
Fukami J., Shishido T. (1966). Nature of a soluble, glutathione-dependent enzyme system active in cleavage of methyl parathion to desmetyl parathion. J. Econ. Entomol. 59, p. 1338–1349.
Georghiou GP. (1990). Overview of Insecticide Resistance. In Georghiou GP. Managing resistance to agro - chemicals from fundamental research to practical strategies. Washington: American Chemical Society, ACS Symposiums Series 421, p. 18–41.
Guedes RNC., Kambhampati S., Dover BA., Zhu KY. (1997). Biochemical mechanisms of organophosphate resistance in Rhyzopertha dominica populations from the United States and Brazil. Bull. Entomol. Res. 87, p. 581–586.
Guerrero FD., Jamroz RC., Kammlah D., Kunz SE. (1997). Toxicological and molecular characterization of pyrethroid-resistant horn flies, Haematobia irritans, identification of kdr and super-kdr point mutations. Insect Biochem. Mol. Biol. 27, p. 745–755.
Hama H., Iwata T. (1971). Studies on the inheritance of carbamate resistance in the green rice leafhopper, Nephotettix cincticeps. Relationships between insensitivity of acetylcholinesterase and crossresistance to carbamate and organophosphate insecticides. Appl. Entomol. Zool. 13, p. 190–202.
Hammock BD. (1985). Regulation of juvenile hormone titer: degradation. In Kerkut GA., Gilbert LI. Comprehensive insect physiology biochemistry and pharmacology. Oxford UK: Pergamon 12, p. 431–472.
Hemingway J. (1982). The biochemical nature of malathion resistance in Anopheles stephensi from Pakistan. Pestic. Biochem. Physiol. 17, p. 149–155.
Hemingway J. (1985). Malathion carboxylesterase enzymes in Anopheles arabiensis from Sudan. Pestic. Biochem. Physiol. 23, p. 309–313.
Hemingway J., Penilla RP., Rodriguez AD., James BM., Edge W., Rogers H., Rodriguez MH. (1997). Resistance management strategies in malaria vector mosquito control – a large scale field trial in Southern Mexico. Pestic. Sci. 51, p. 375–382.
Hughes PB., Mc Kenzie JA. (1987). Insecticide resistance in Lucilia cuprina: speculation, science and strategies. In Devonshire AL. Combating resistance to xenobiotics: Biological and chemical approaches. Chichester, UK: Horwood p. 162–177
Jongsma MA., Bakker PL., Peters J., Bosch D., Stiekema WJ. (1995). Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc. Natl. Acad. Sci. USA 92, p. 8041–8045.
Keiding J. (1977). Resistance in the housefly in Denmark and elsewhere. In Watsun DL., Brown AWA. Pesticide management and insecticide resistance. New York: Academic Press, p. 261–302.
Kojima K., Ishizuka T., Kitakata S. (1963). Mechanism of resistance to malathion in the green rice leafhopper. Botyu-Kagaku 28, p. 17–25.
Kuhr RJ. (1971). Comparative metabolism of carbaryl by resistant and susceptible strains of the cabbage looper. J. Econ. Entomol. 64, p. 1373–1378.
Kuwahara M., Miyata T., Saito T., Eto M. (1982). Activity and substrate specificity of the esterase associated with organophosphorus insecticide resistance in the Kanzawa spider mite Tetranychus kanzawai. Appl. Entomol. Zool. 17, p. 82–91.
Lafaurie M. (1995). La PCR au service de l’environnement. Biofutur 142, p. 22–26.
Lagadic L., Cuany A., Berge JB., Echaubard M. (1993). Purification and partial characterization of glutathione S-transferases from insecticide resistant and lindane induced susceptible Spodoptera littoralis larvae. Insect Biochem. Mol. Biol. 23, p. 467–474.
Lee KS., Walker CH., McCaffery A., Ahmad M., Little E. (1989). Metabolism of trans-Cypermethrin by Heliothis armigera and H. virescens. Pestic. Biochem. Physiol. 34, p. 49–57.
Lewis JB. (1969). Detoxification of diazinon by subcellular fractions of diazinon resistant and susceptible houseflies. Nature 224, p. 917–918.
Lockwood JA., Sparks TC., Story RN. (1984). Evolution of insect resistance to insecticides: a reevaluation of the roles of physiology and behaviour. Bull. Entomol. Soc. Am. 30, p. 41–51.
Lombet A., Mourre C., Ladzunski M. (1988). Interactions of insecticides of pyrethroid family with specific binding sites on the voltage-dependent sodium channel from mammalian brain. Brain Res. 459, p. 44–48.
Malcolm CA., Boddington RG. (1989). Malathion resistance confered by a carboxylesterase in Anopheles culicifacies GILES (species B). Bull. Entomol. Res. 79, p. 193–199.
Matsumura F. (1983). Penetration, binding and targ e t ensensitivity as causes of resistance to chlorinated hydrocarbon insecticides. In Georghiou GP., Saito T. Pest resistance to pesticides: challenges and prospects. New York: Plenum Press, p. 367–386.
Milani R., Travaglino A. (1957). Ricerche genetiche sulla resistenza al DDT in Musca domestica concatenazione del gene kdr (knockdown-resistance) con due mutanti morphologi. Riv. Parasitol. 18, p. 199–202.
Moldenke AF., Vincent DR., Farnsworth DE., Ferriere LC. (1984). Cytochrome P-450 in insects. 4. Reconstitution of cytochrome P-450-dependent monooxygenase activity in the housefly. Pestic. Biochem. Physiol. 21, p. 358–367.
Motoyama N., Dauterman WC. (1972). In vivo metabolism of azinphosmethyl in susceptible and resistant houseflies. Pestic. Biochem. Physiol. 2, p. 113–122.
Mouchès C., Pasteur N., Bergé JB., Hyrien O., Raymond M., Vincent BRS., Silvestri M., Georghiou GP. (1986). Amplification of a esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 233, p. 778–782.
Mouchès C., Pauplin Y., Agarwal M., Lemieux L., Herzog M., Abadon M., Beyssat-Arwonty V., Hyrien O., de Saint-Vincent BR., Georghiou GP., Pasteur N. (1990). Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex. Proc. Natl. Acad. Sci. USA 87, p. 2574–2578.
Nicholson SA., Sawicki RM. (1980). Genetic and biochemical studies of resistance to permethrin in a pyrethroid-resistant strain of the housefly (Muscadomestica L.). Pestic. Sci. 13, p. 357–366.
Omer SM., Georghiou GP., Irving SN. (1980). DDT/pyrethroid resistance inter-relationships in Anopheles stephensi. Mosq. News 40, p. 200–209.
Oppenoorth FJ. (1965). Biochemical genetics of insecticide resistance. Annu. Rev. Entomol. 10, p. 185–206.
Oppenoorth FJ. (1985). Biochemistry and genetics of insecticide resistance. In Kerkut GA., Gilbert LI. Comprehensive insect physiology biochemistry and pharmacology. Oxford, UK: Pergamon 12, p. 731–733.
Oppenoorth FJ., Van Asperen K. (1960). Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance. Science 132, p. 298–299.
Ozaki K. (1969). The resistance to organophosphorus insecticides of the green rice leafhopper Nephotettix cincticeps and the smaller brown plant hopper Laodelphax striatellus. Rev. Plant Prot. Res. 2, p. 1–15.
Ozaki K., Kasai T. (1970). Biochemical genetics of malathion resistance in the smaller brown plant hopper (Laodelphax striatellus). Entomol. Exp. Appl. 1 3, p. 162–172.
Park Y., Taylor MFJ., Fyereisen R. (1997). A valine421 to methionine in IS6 of the HSCP voltage-gated sodium channel associated with pyrethroid resistance in Heliothis virescens. Biochem. Biophys. Res. Com. 239, p. 688–691.
Parker AG., Russell RJ., Delves AC., Oakeshott JG. (1991). Biochemistry and physiology of esterases in organophosphate –susceptible and– resistant strains of the Australian Sheep Blowfly, Lucilia cuprina. Pestic. Biochem. Physiol. 41, p. 305–318.
Patil VL., Guthrie FE. (1979). Cuticular lipids of two resistant and a susceptible strains of houseflies. Pestic. Sci. 10, p. 399–406.
Pimprikar GD., Georghiou GP. (1979). Mechanisms of resistance to diflubenzuron in the house fly. Pestic. Biochem. Physiol. 12, p. 10–22.
Pittendrigh B., Aronstein K., Zinkovsky E., Andreev O., Campbell B., Daly J., Trowell S., ffrench-Constant RH. (1997). Cytochrome P-450 genes from Helicoverpa armigera: expression in a pyrethroid –susceptible and– resistant strain. Insect Biochem. Mol. Biol. 2 7, p. 507–512.
Plapp FW., Hoyer RF. (1968). Possible pleiotropism of a gene conferring resistance to DDT, DDT analogs and pyrethrins in the housefly and Culex tarsalis. J. Econ. Entomol. 61, p. 761–765.
Prabhakaran SK., Kamble ST. (1996). Biochemical characterization and purification of esterases from three strains of german cockroach, Blattella germanica. Arch. Insect Biochem. Physiol. 31, p. 73–86.
Prahbaker N., Georghiou GP., Pasteur N. (1987). Genetic association between highly active esterases and organophosphate resistance in Culex tarsalis. J. Am. Mosq. Control Assoc. 3, p. 473–475.
Priester TM., Georghiou GP. (1980). Cross-resistance spectrum in pyrethroid-resistant Culex quinquefasciatus. Pest. Sci. 11, p. 617–624.
Raymond M., Fournier D., Bergé JB., Cuany A., Bride JM., Pasteur N. (1985). Single-mosquito test to determine genotypes with an acetylcholinesterase insensitive to inhibition to propoxur insecticide. J. Am. Mosq. Control Assoc. 1, p. 425–427.
Reddy GF., Rose HA., Viseton S., Murray M. (1990). Increased glutathione transferase activity and glutathione content in a insecticide-resistant strain of Tribolium castaneum. Pestic. Biochem. Physiol. 36, p. 269–276.
Rose HA., Wallbank BE. (1988). Mixed-function oxidase and glutathione-transferase activity in a susceptible fenitrothion-resistant strain of O ryzaephilus surin - amensis. J. Econ. Entomol. 70, p. 896–899.
Sawicki RM., Farnham AW. (1968). Examination of the isolated autosomes of the SKA strain of houseflies for resistance to several insecticide with and without pretreatment with sesamex and TBTP. Bull. Entomol. Res. 59, p. 409.
Scott JG. (1996). Cytochrome P-450 monooxygenasem ediated resistance to insecticides. J. Pestic. Sci. 21, p. 241–245.
Scott JG., Matsumura F. (1981). Characteristic of a DDT induced case of cross-resistance to permethrin in Blattella germanica. Pestic. Biochem. Physiol. 1 6, p. 21–27.
Scott JG., Georghiou GP. (1986). Malathion specific resistance in Anopheles stephensi from Pakistan. J. Am. Mosq. Control Assoc. 2, p. 29–32.
Scott JG., Lee ST. (1993). Tissue distribution of microsomal cytochrome P-450 monooxygenases and their inducibility by phenobarbital in the insecticide resistant LPR strain of house fly. Insect Biochem. Mol. Biol. 23, p. 729–738.
Shrivastata SP., Georghiou GP., Metcalf RL., Fukuto TR. (1970). Carbamate resistance in mosquitoes: the metabolism of propoxur by susceptible and resistant larvae of Culex pipiens fatigans. Bull. World Health Organ. 42, p. 931–942.
Smissaert HR. (1964). Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Science 143, p. 129–131.
Sparks JC., Lockwood JA., Byford RL., Graves JB., Leonard BR. (1989). The role of behaviour in insecticide resistance. Pestic. Sci. 26, p. 383–399.
Stone BF., Brown AWA. (1969). Mechanisms of resistance to fenthion in Culex pipiens. Bull. Organ. Mond. Santé 40, p. 401–408.
Tanaka K. (1981). The mechanism of resistance to lindane and hexadenterated lindane in third Yumenoshima strain of houseflies. Pestic. Biochem. Physiol. 16, p. 149–157.
Thompson M., Steichen JC., ffrench-Constant RH. (1993). Conservation of cyclodiene insecticide resistanceassociated mutations in insects. Insect Mol. Biol. 2, p. 149–154.
Tomita T., Scott JG. (1995). cDna and deduced protein sequence of CYP6D1: the putative gene for a cytochrome P-450 responsible for pyrethroid resistance in house fly. Insect Biochem. Mol. Biol. 25, p. 275–283.
Tripathi RK., O’Brien RD. (1973). Insensitivity of acetylcholinesterase as a factor in resistance of houseflies to the organophosphate Rabon. Pest. Biochem. Physiol. 6, p. 30–34.
Tsukamoto M., Narahashi T., Yamasaki T. (1965). Genetic control of low nerve sensitivity to DDT in insecticideresistant houseflies. Botyu-Kagaku 30, p. 128–132.
Tsukamoto M., Casida JE. (1967). Metabolism of methylcarbamate insecticides by the NADPH2 requiring system from houseflies. Nature 213, p. 49–51.
Usui T., Yoshida M., Honda A., Beppu T., Horinouchi S. (1995). A K-252A-resistance gene, SKS1 (+) encodes a protein similar to Caenorhabditis elegans F37 A4.5 gene product and confers multidrug resistance in Schizosaccharomyces pombe. Gene 161, p. 93–96.
Van Rie J., Mc Faughey WH., Johnson DE., Barnett BD., Van Mellaert D. (1990). Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247, p. 72–74.
Walter CM., Price NR. (1989). The uptake and penetration of pirimiphos-methyl into susceptible and resistant strains of the red flour beetle Tribolium castaneum. Comp. Biochem. Physiol. 94c, p. 419–423.
Waters LC., Zelhof AC., Shaw BJ., Chang LY. (1992). Possible involvement of a long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P-450 gene in Drosophila. Proc. Nat. Acad. Sci. USA 89, p. 22–27.
Whyard S., Downe AER., Walker VK. (1994a). Isolation of an esterase conferring insecticide resistance in the mosquito Culex tarsalis. Insect Biochem. Mol. Biol. 24, p. 819–827.
Whyard S., Russell RJ., Walker VK. (1994b). Insecticide resistance and malathion carboxylesterase in Lucilia cuprina. Biochem. Genet. 32, p. 9–24.
Williamson MS., Martinez-Torres D., Dick CA., Devonshire AL. (1996). Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (Kdr) to pyrethroid insecticides. Mol. Gen. Genet. 252, p. 51–60.
Wu CT., Budding M., Griffin MS., Croop J. (1991). Isolation and characterization of Drosophila multidrug resistance gene homologs. Mol. Cell Biol. 11, p. 3940–3948.
Yarbrough JD., Roush RT., Bonner JC., Wise DA. (1986). Monogenic inheritance of cyclodiene insecticide resistance in mosquitofish, Gambusia affinis. Experientia 42, p. 851–853.
Zaazou MH., Ali AM., Abdallah MD., Riskallah MR. (1973). In vivo and in vitro inhibition of cholinesterase and aliesterase in susceptible and resistant strains of Spodoptera littoralis. Bull. Entomol. Soc. Egypt. Econ. 7, p. 25–30.
Zhu KY., Clark M. (1993). Purification and characterization of acetylcholinesterase from Leptinotarsa decemlineata. Insect Biochem. Mol. Biol. 23, p. 245–251.
Ziegler R., Whyard S., Downe AER., Wyatt GR., Walker VK. (1987). General esterase, malathion carboxylesterase and malathion resistance in Culex tarsalis. Pestic. Biochem. Physiol. 28, p. 213–225.