[en] Naturally occurring sleep and altered consciousness related to the infusion of sedative medications are sometimes mistakenly thought of as being equivalent. While similarities between these two states do exist, differences are considerable and clinically important. Normal sleep is characterized by a cyclic, organized series of brain activities with clearly defined stages that is governed by circadian and homeostatic forces and responsive to external stimuli where arousal leads to almost immediate patient awareness. Consciousness altered by sedative medications has few, if any, of these characteristics. The unique effects of sleep and altered consciousness related to sedative use on brain activity can be described by both phenomenological and physiological parameters. This chapter will review the similarities and differences between natural sleep and sedative-associated alterations in consciousness to determine whether the essential physiologic functions of sleep, some of which may be important to recovery from critical illness, also occur during sedative infusion administration.
Disciplines :
Anesthesia & intensive care
Author, co-author :
BECK, Florian ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
Gosseries, Olivia ; Université de Liège - ULiège > GIGA Consciousness - Coma Science Group
Weinhouse, Gerald; Harvard University > Division of Pulmonary and Critical Care
BONHOMME, Vincent ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
Language :
English
Title :
Normal Sleep Compared to Altered Consciousness During Sedation
Publication date :
2022
Main work title :
Sleep in Critical Illness: Physiology, Associated Outcomes, and its Potential Role in Recovery
Marechal H, Defresne A, Montupil J, Bonhomme V. Chapter 24 -Choice of sedation in neurointensive care. In: Prabhakar H, editor. Essentials of evidence-based practice of neuroanesthesia and neurocritical care [Internet]. Academic Press; 2022. p. 321-58. Available from: https://www.sciencedirect.com/science/article/pii/B978012821776400024X
Bonhomme V, Vanhaudenhuyse A, Demertzi A, Bruno MA, Jaquet O, Bahri MA, et al. Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers. Anesthesiology. 2016;125(5):873-88.
Weerink MAS, Struys MMRF, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin Pharmacokinet [Internet]. 2017;56(8):893-913. https://doi.org/10.1007/s40262-017-0507-7.
Bonhomme V, Staquet C, Montupil J, Defresne A, Kirsch M, Martial C, et al. General anesthesia: a probe to explore consciousness. Front Syst Neurosci. 2019;1336.
Baird B, Mota-Rolim SA, Dresler M. The cognitive neuroscience of lucid dreaming. Neurosci Biobehav Rev. 2019;100305-23.
Baird B, LaBerge S, Tononi G. Two-way communication in lucid REM sleep dreaming. Trends Cogn Sci. 2021;25(6):427-8.
Wamsley EJ, Stickgold R. Memory, sleep and dreaming: experiencing consolidation. Sleep Med Clin. 2011;697-108.
Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev. 2018;70(3):621-60.
Brown EN, Purdon PL, Van Dort CJ. General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu Rev Neurosci. 2011;34601-28.
Moody OA, Zhang ER, Vincent KF, Kato R, Melonakos ED, Nehs CJ, et al. The neural circuits underlying general anesthesia and sleep. Anesthesia and Analgesia Lippincott Williams and Wilkins. 2021;1321254-64.
Prerau MJ, Brown RE, Bianchi MT, Ellenbogen JM, Purdon PL. Sleep neurophysiological dynamics through the lens of multitaper spectral analysis. Physiology. 2017;32(1):60-92.
Adamantidis AR, Gutierrez Herrera C, Gent TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci. 2019;20(12):746-62.
Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98(2):428-36.
Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists: part I: background and basic signatures. Anesthesiology. 2015;123(4):937-60.
Sleigh J, Harvey M, Voss L, Denny B. Ketamine -more mechanisms of action than just NMDA blockade. Trends Anaesth Crit Care [Internet]. 2014;4(2-3):76-81. https://doi.org/10.1016/j.tacc.2014.03.002.
Kokkinou M, Ashok AH, Howes OD. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol Psychiatry. 2018;23(1):59-69.
Kraguljac NV, Frölich MA, Tran S, White DM, Nichols N, Barton-McArdle A, et al. Ketamine modulates hippocampal neurochemistry and functional connectivity: a combined magnetic resonance spectroscopy and resting-state fMRI study in healthy volunteers. Mol Psychiatry. 2017;22(4):562-9.
Höflich A, Hahn A, Küblböck M, Kranz GS, Vanicek T, Ganger S, et al. Ketamine-dependent neuronal activation in healthy volunteers. Brain Struct Funct. 2017;222(3):1533-42.
Franks NP, Zecharia AY. Sleep and general anesthesia. Can J Anesth. 2011;58(2):139-48.
Meuret P, Backman SBSB, Bonhomme V, Plourde G, Fiset P. Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers. Anesthesiology [Internet]. 2000;93(3):708-17Available from::http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpageandan=00000542-200009000-00020..
Akeju O, Brown EN. Neural oscillations demonstrate that general anesthesia and sedative states are neurophysiologically distinct from sleep. Curr Opin Neurobiol. 2017;44178-85.
Sarasso S, Rosanova M, Casali AG, Casarotto S, Fecchio M, Boly M, et al. Quantifying cortical EEG responses to TMS in (Un)consciousness. Clin EEG Neurosci. 2014;45(1):40-9.
Gaskell ALL, Hight DFF, Winders J, Tran G, Defresne A, Bonhomme V, et al. Frontal alpha-delta EEG does not preclude volitional response during anaesthesia: prospective cohort study of the isolated forearm technique. Br J Anaesth. 2017;119(4):664-73.
Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KFK, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci [Internet]. 2013;110(12):E1142-51. https://doi.org/10.1073/pnas.1221180110.
Sarasso S, Boly M, Napolitani M, Gosseries O, Charland-Verville V, Casarotto S, et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr Biol [Internet]. 2015;25(23):3099-105. https://doi.org/10.1016/j.cub.2015.10.014.
Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists-Part I-background and basic Signatures_Anesthesiology_2015.pdf -Google drive. Anesthesiology [Internet] 2015;123(4):937-60. Available from: https://drive.google.com/file/d/14_bPZ-wIZJ3-JrVsUN-2a5-b3_rDOw6u/view?ts=5aa038f3
Lee U, Mashour GA. Role of network science in the study of anesthetic state transitions. Anesthesiology [Internet]. 2018;129(5):1029-44Available from::http://insights.ovid.com/crossref?an=00000542-900000000-96883..
Houldin E, Fang Z, Ray LB, Owen AM, Fogel SM. Toward a complete taxonomy of resting state networks across wakefulness and sleep: an assessment of spatially distinct resting state networks using independent component analysis. Sleep. 2019;42(3):1-9.
Picchioni D, Duyn JH, Horovitz SG. Sleep and the functional connectome. NeuroImage. 2013;80387-96.
Tagliazucchi E, van Someren EJW. The large-scale functional connectivity correlates of consciousness and arousal during the healthy and pathological human sleep cycle. NeuroImage. 2017;160(June):55-72.
Sanz Perl Y, Pallavicini C, Pérez Ipiña I, Demertzi A, Bonhomme V, Martial C, et al. Perturbations in dynamical models of whole-brain activity dissociate between the level and stability of consciousness. PLoS Comput Biol. 2021;17(7):e1009139.
Houldin E, Fang Z, Ray LB, Stojanoski B, Owen AM, Fogel SM. Reversed and increased functional connectivity in non-REM sleep suggests an altered rather than reduced state of consciousness relative to wake. Sci Rep. 2021;11(1):1-15.
Tagliazucchi E, Von Wegner F, Morzelewski A, Brodbeck V, Jahnke K, Laufs H. Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep. Proc Natl Acad Sci U S A. 2013;110(38):15419-24.
Massimini M, Ferrarelli F, Huber R, Esser SK. Breakdown of cortical effective connectivity during sleep. Science (80-). 2005;309(5744):2228-33.
Ly JQM, Gaggioni G, Chellappa SL, Papachilleos S, Brzozowski A, Borsu C, et al. Circadian regulation of human cortical excitability. Nat Commun. 2016;7(May):11828.
Cardone P, Egroo M, Van Chylinski D, Narbutas J, Gaggioni G, Vandewalle G. Increased cortical excitability and reduced brain response propagation during attentional lapses. medRxiv. 2020;2020.04.01.20049650.
Huber R, Mäki H, Rosanova M, Casarotto S, Canali P, Casali AG, et al. Human cortical excitability increases with time awake. Cereb Cortex. 2013;23(2):332-8.
Zhou S, Zou G, Xu J, Su Z, Zhu H, Zou Q, et al. Dynamic functional connectivity states characterize NREM sleep and wakefulness. Hum Brain Mapp. 2019;40(18):5256-68.
Tagliazucchi E, Laufs H. Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron. 2014;82(3):695-708.
Siclari F, Baird B, Perogamvros L, Bernardi G, LaRocque JJ, Riedner B, et al. The neural correlates of dreaming. Nat Neurosci. 2017;20(6):872-8.
Fiset P, Paus T, Daloze T, Plourde G, Meuret P, Bonhomme V, et al. Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci [Internet]. 1999;19(13):5506-13Available from::http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmedandid=10377359andretmode=refandcmd=prlinks%5Cnpapers3://publication/uuid/18403EA6-98F9-4B0F-B8D3-538FDF747B51..
Boveroux P, Vanhaudenhuyse A, Bruno M-AA, Noirhomme Q, Lauwick S, Luxen A, et al. Breakdown of within-and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology [Internet]. 2010;113(5):1038-53. https://doi.org/10.1097/ALN.0b013e3181f697f5.
Ihalainen R, Gosseries O, de Steen F, Van Raimondo F, Panda R, Bonhomme V, et al. How hot is the hot zone? Computational modelling clarifies the role of parietal and frontoparietal connectivity during anaesthetic-induced loss of consciousness. NeuroImage. 2021;231117841.
Lee U, Ku S, Noh G, Baek S, Choi B, Mashour G, a. Disruption of frontal -parietal communication. Anesthesiology. 2013;118(6):1264-75.
Lee U, Kim S, Noh GJ, Choi BM, Hwang E, Mashour GA. The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans. Conscious Cogn [Internet]. 2009;18(4):1069-78. https://doi.org/10.1016/j.concog.2009.04.004.
Boly M, Moran R, Murphy M, Boveroux P, Bruno M-AM-A, Noirhomme Q, et al. Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J Neurosci [Internet]. 2012;32(20):7082-90. https://doi.org/10.1523/JNEUROSCI.3769-11.2012.
Untergehrer G, Jordan D, Kochs EF, Ilg R, Schneider G. Fronto-parietal connectivity is a non-static phenomenon with characteristic changes during unconsciousness. PLoS One. 2014;9(1):e87498.
Guldenmund P, Gantner ISIS, Baquero K, Das T, Demertzi A, Boveroux P, et al. Propofol-induced frontal cortex disconnection: a study of resting-state networks, Total brain connectivity, and mean BOLD signal oscillation frequencies. Brain Connect [Internet]. 2016;6(3):225-37. https://doi.org/10.1089/brain.2015.0369.
Sanders RD, Banks MI, Darracq M, Moran R, Sleigh J, Gosseries O, et al. Propofol-induced unresponsiveness is associated with impaired feedforward connectivity in cortical hierarchy. Br J Anaesth [Internet]. 2018;121(5):1084-96. https://doi.org/10.1016/j.bja.2018.07.006.
Gómez F, Phillips C, Soddu A, Boly M, Boveroux P, Vanhaudenhuyse A, et al. Changes in effective connectivity by propofol sedation. PLoS One. 2013;8(8):e71370.
Barttfeld P, Uhrig L, Sitt JD, Sigman M, Jarraya B. Erratum: signature of consciousness in the dynamics of resting-state brain activity (Proceedings of the National Academy of Sciences of the United States of America (2015) 112 (887-892)). Proc Natl Acad Sci U S A. 2015;112(37):E5219-20.
Cavanna F, Vilas MG, Palmucci M, Tagliazucchi E. Dynamic functional connectivity and brain metastability during altered states of consciousness. Neuroimage [Internet]. 2018;180:383-95Available from:.https://doi.org/10.1016/j.neuroimage.2017.09.065..
Långsjö JW, Kaisti KK, Aalto S, Hinkka S, Aantaa R, Oikonen V, et al. Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology [Internet]. 2003;99(3):614-23Available from::http://www.ncbi.nlm.nih.gov/pubmed/12960545..
Driesen NR, McCarthy G, Bhagwagar Z, Bloch M, Calhoun V, D’Souza DC, et al. Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Mol Psychiatry [Internet]. 2013;18(11):1199-204Available from::http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3646075andtool=pmcentrezandrendertype=abstract..
Vlisides PE, Bel-Bahar T, Lee U, Li D, Kim H, Janke E, et al. Neurophysiologic correlates of ketamine sedation and anesthesia. Anesthesiology. 2017;127(1):58-69.
Guldenmund P, Vanhaudenhuyse A, Sanders RD, Sleigh J, Bruno MA, Demertzi A, et al. Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep. Br J Anaesth. 2017 Oct;119(4):674-84.
Hashmi JA, Loggia ML, Khan S, Gao L, Kim J, Napadow V, et al. Dexmedetomidine disrupts the local and global efficiencies of large-scale brain networks. Anesthesiology. 2017;126(3):419-30.
Treggiari-Venzi M, Borgeat A, Fuchs-Buder T, et al. Overnight sedation with midazolam or propofol in the ICU: effects on sleep quality, anxiety and depression. Intensive Care Med. 1996;221186-90.
Corbett SM, Rebuck JA, Greene CM, et al. Dexmedetomidine does not improve patient satisfaction when compared with propofol during mechanical ventilation. Crit Care Med. 2005;33940-5.
Pal D, Lipinski WJ, Walker AJ, et al. State-specific effects of sevoflurane anesthesia on sleep homeostasis: selective recovery of slow wave but not rapid eye movement sleep. Anesthesiology. 2011;114302-10.
Tung A, Bergmann BM, Herrara S, et al. Recovery from sleep deprivation occurs during propofol anesthesia. Anesthesiology. 2004;1001419-26.
Ozone M, Itoh H, Wataru Y, et al. Changes in subjective sleepiness, subjective fatigue and nocturnal sleep after anaesthesia with propofol. Psychiatry Clin Neurosci. 2000;54317-8.
Burry L, Cook D, Herridge M, et al. Recall of ICU stay in patients managed with a sedation protocol or a sedation protocol with daily interruption. Crit Care Med. 2015;43210-90.
Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342373-7.
Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science. 2020;37050-6.
Lilius TO, Blomqvist K, Hauglund NL, et al. Dexmedetomidine enhances glymphatic brain delivery of intrathecally administered drugs. J Control Release. 2019;30429-38.
Benveniste H, Heerdt P, Fontes M, et al. Glymphatic system function in relation to anesthesia and sleep states. Anesth Analg. 2019;128747-58.