[en] l-Thyroxine is converted to 3,5,3'-l-triiodothyronine (T(3)) as well as to 3,3',5'-l-triiodothyronine (reverse T(3)). One product of further deiodination is 3,3'-diiodothyronine (3,3'T(2)). The serum levels of reverse T(3) and 3,3'T(2) change considerably in various physiological and disease states. We previously found that reverse T(3) and 3,3'T(2) bind to the solubilized hepatic nuclear "receptors" for thyroid hormones. This led us to study binding and actions of these metabolites in cultured rat pituitary cells in which glucose consumption and growth hormone production are regulated by T(3) and l-thyroxine.Reverse T(3) and 3,3'T(2) stimulated growth hormone production and glucose consumption and inhibited nuclear binding of radioactive T(3). Either metabolite produced maximal effects that equaled those of T(3), and neither inhibited the T(3) response. Further, additive effects were observed when reverse T(3) was combined with submaximal concentrations of T(3).In serum-free and serum-containing media, concentrations of 3,3'T(2) 50- to 70- and 10- to 100-fold greater, respectively, than those of T(3) were required for equivalent stimulations and for inhibition of nuclear binding by T(3). The relative activity differences under the two conditions can be attributed to weaker serum protein binding of 3,3'T(2) than T(3). With cells in serum-free media, reverse T(3) was a less avid competitor than 3,3'T(2) for T(3) binding by the nuclear receptors, and was less potent than 3,3'T(2) (0.001 the potency of T(3)) in inducing growth hormone production or glucose oxidation. In incubations with serum-containing media, reverse T(3) was an ineffective competitor for T(3) binding, and had only 0.1 the inducing potency of 3,3'T(2) (0.001 the potency of T(3)). The weaker activity of reverse T(3) relative to 3,3'T(2) in serum-containing media could be explained by stronger serum binding of reverse T(3) than 3,3'T(2). In addition, after long-term incubation of cells with radioactive reverse T(3), much of the cell-associated radioactivity was recovered as 3,3'T(2).These studies suggest that reverse T(3) and 3,3'T(2) can stimulate thyroid hormone-regulated functions as weak agonists by acting via the same receptors that mediate T(3) actions. Moreover, some of the effects of reverse T(3) may be due to 3,3'T(2) produced by deiodination of reverse T(3).
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Papavasiliou, S. S.
Martial, Joseph ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Latham, K. R.
Baxter, J. D.
Language :
English
Title :
Thyroid hormonelike actions of 3,3',5'-L-triiodothyronine nad 3,3'-diiodothyronine
Publication date :
1977
Journal title :
Journal of Clinical Investigation
ISSN :
0021-9738
eISSN :
1558-8238
Publisher :
American Society for Clinical Investigation, Ann Arbor, United States - Michigan
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.