[en] The problem of the parameter identification of the three-element windkessel model is studied. Minimization by least-square technique--LSQ--in time domain and frequential techniques--FFT--are compared. Continuous pressure and flow curves were recorded in the proximal aorta of an open chest dog. Comparison shows very high correlations between the parameter estimations obtained by LSQ and FFT methods. However, systematic differences appear between the calculated values, but do not seem to endanger physiological interpretation of the results.
Disciplines :
General & internal medicine
Author, co-author :
Pochet, T.
Gérard, Paul ; Université de Liège - ULiège > Département de mathématique > Statistique (aspects expérimentaux)
Marnette, J. M.
D'Orio, Vincenzo ; Université de Liège - ULiège > Département des sciences cliniques > Médecine d'urgence - bioch. et phys. hum. normales et path.
Marcelle, Roland ; Université de Liège - ULiège > Relations académiques et scientifiques (Médecine)
Fatemi, M.
Fossion, Anny ; Université de Liège - ULiège > Relations académiques et scientifiques (Psycho et sc.éduc.)
Juchmes, J.
Language :
English
Title :
Identification of Three-Element Windkessel Model: Comparison of Time and Frequency Domain Techniques
Publication date :
1992
Journal title :
Archives Internationales de Physiologie, de Biochimie et de Biophysique
Ashe J.W., Marble A.E., Swingler D.N., Landymore R.W., Kinley C.E. (1989) The measurement of afterload, vascular input impedance, and power distribution in aorto-femoral bypass. J. Biomechanics 22:447-453.
Broemser P., Ranke O. (1930) Ueber die Messung des Schlagvolumens des Herzens auf unblutigem Weg. Z. Biol. 90:467-507.
Burattini R., Fioretti S., Jetto L. (1985) A simple algorithm for defining the mean cardiac cycle of aortic blood flow and pressure during steady state. Comput. Biomed. Res. 18:303-312.
Burkhoff D., Alexander J., Schipke J. (1985) Assessment of windkessel as a model of aortic input impedance. Am. J. Physiol. 255:H742-H753.
Laskey W.K., Parker H.G., Ferrari V.A., Kussmaul W.G., Noordergraaf A. (1990) Estimation of total systemic arterial compliance in humans. J. Appl. Physiol. 69:112-119.
Latham R.D., Rubal B.J., Schwartz R.S. (1989) Gravitational influence on systemic arterial dynamics using a 3-element windkessel model. Physiologist 32:S82-S83.
Liu Z.R., Brin K.P., Yin F.C.P. (1986) Estimation of total arterial compliance: an improved method and evaluation of current methods. Am. J. Physiol. 251:H588-H600.
Pochet T. Contribution a la modélisation mathémathique de l'hémodynamique du systéme cardiovasculaire, Ph. D. thesis, University of Liege; 1991.
Powell M.J.D. (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer J. 7:155-162.
Savitzky A., Golay M.J.E. (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36:1627-1639.
Toorop G.P., Westerhof N., Elzinga G. (1987) Beat-to-Beat estimation of peripheral resistance and arterial compliance during pressure transients. Am. J. Physiol. 252:H1275-H1283.
Toy S.M., Melbin J., Noordergraaf A. (1985) Reduced models of arterial systems. IEEE Trans. Biomed. Eng. 32:174-176.
Westerhof N., Elzinga G., Sipkema P. (1971) An artificial arterial system for pumping hearts. J. Apll. Physiol. 31:776-781.