[en] LASER beams used in holography have a Gaussian distribution. As a result, the interference patterns produced will be influenced by this particular distribution. We examine this influence on one of the essential parameters: the diffraction efficiency.
Disciplines :
Physics
Author, co-author :
Leclere, Philippe; Université de Mons - UMONS > Chimie
Renotte, Yvon ; Université de Liège - ULiège > Département de physique > Optique - Hololab
C. Braüchle and D. M. Burland, “Holographic methods for the investigation of photochemical and photophysical properties of molecules,” Angew. Chem. Int. Eds. 22, 582-598 (1983).
C. Braiichle, “Holography as a new tool for investigating photochemical reaction in the solid-state,” Mol. Cryst. Liq. Cryst. 96,83-98 (1983).
D. M. Burland and D. Braiichle, “The use of holography to investigate complex photochemical reactions,” J. Chem. Phys. 76,4502-4512 (1982).
C. Braiichle, D. M. Burland, and G. C. Bjorklund, “Hydrogen abstraction by benzophenone studied by holographic photochemistry,” J. Phys. Chem. 85,123-127 (1981).
D. M. Burland, “Holographic methods for investigating solid- stade photochemistry,” IEEE J. Quantum Electron. QE-22, 1469-1475 (1986).
G. C. Bjorklund, D. M. Burland, and D. C. Alvarez, “A holographic technique for investigating photochemical reactions,” J. Chem. Phys. 73,4321-4328 (1980).
F. W. Deeg, J. Pinsl, and C. Braiichle, “New grating experiments in the study of irreversible photochemical reactions,” IEEE J. Quantum Electron. QE-22,1476-1486 (1986).
F. W. Deeg, J. Pinsl, C. Braiichle, and J. Voitlander, “The evaluation of photochemical quantum yields by holography,” J. Chem. Phys. 79,1229-1234 (1983).
H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909-2947 (1969).