[en] This chapter discusses different approaches used to model soil dynamic processes: physical (temperature and water), chemical, and biological (nitrogen and carbon). It presents insights on the spatial variability of soils and their impact on yield variations as well as a case study of a multi‐model ensemble to predict changes of soil organic carbon and its feedback to yield in sites across the world. Process‐based models models use a mechanistic approach to represent the complex biophysical processes that influence greenhouse gas emissions and plant growth. These models simulate N2O emissions derived from nitrification. Compared with nitrification, denitrification is more complex in terms of its biochemistry, and it produces N2O as an obligate intermediate. New datasets for different agroecosystems, crop rotations, and agronomic practices that include high‐frequency soil water, soil mineral N, and N2O measurements are currently being developed.
Disciplines :
Computer science Agriculture & agronomy
Author, co-author :
Basso, Bruno
Cammarano, Davide
Migliorati, Massimiliano De Antononi
Maestrini, Bernardo
Dumont, Benjamin ; Université de Liège - ULiège > Département GxABT > Phytotechnie tempérée
Grace, Peter R.
Language :
English
Title :
Chapter 20: Modeling Soil Dynamic Processes
Publication date :
2020
Main work title :
Agroclimatology: Linking Agriculture to Climate, Volume 60
Author, co-author :
Hatfield, J.L., Sivakumar, M.V.K.
Publisher :
American Society of Agronomy, Crop Science Society of America, and Soil Society of America
Abdalla, M., M. Jones, J. Yeluripati, P. Smith, J. Burke, and M. Williams. 2010. Testing Day-Cent and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture. Atmos. Environ. 44:2961-2970. doi:10.1016/j.atmosenv.2010.05.018
Agricultural Model Intercomparison and Improvement Project. 2019. Agricultural Model Intercomparison and Improvement Project. Columbia University, New York, NY. http://www.agmip.org/ (Accessed 2 Apr. 2019). [2019 is year accessed].
Asseng, S., F. Ewert, P. Martre, R.P. Rötter, D.B. Lobell, D. Cammarano, B. Kimball, M. Ottman, G. Wall, J.W. White, M.P. Reynolds, P.D. Alderman, P.V. Prasad, P.K. Aggarwal, J. Anothai, B. Basso, C. Biernath, A.J. Challinor, G. De Sanctis, J. Doltra, E. Fereres, M. Garcia-Vila, S. Gayler, G. Hoogenboom, L.A. Hunt, R.C. Izaurralde, M. Jabloun, C.D. Jones, K.C. Kersebaum, A.-K. Koehler, C. Müller, S. Naresh Kumar, C. Nendel, G. O’Leary, J.E. Olesen, T. Palosuo, E. Priesack, E. Eyshi Rezaei, A.C. Ruane, M.A. Semenov, I. Shcherbak, C. Stöckle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, P.J. Thorburn, K. Waha, E. Wang, D. Wallach, J. Wolf, Z. Zhao, and Y. Zhu. 2015. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 5:143-147. doi:10.1038/nclimate2470
Asseng, S., F. Ewert, C. Rosenzweig, J.W. Jones, J.L. Hatfield, A.C. Ruane, K.J. Boote, P.J. Thorburn, R.P. Rotter, D. Cammarano, N. Brisson, B. Basso, P. Martre, P.K. Aggarwal, C. Angulo, P. Bertuzzi, C. Biernath, A.J. Challinor, J. Doltra, S. Gayler, R. Goldberg, R. Grant, L. Heng, J. Hooker, L.A. Hunt, et al. 2013. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Chang. 3:827-832. doi:10.1038/nclimate1916
Barton, L., K. Butterbach-Bahl, R. Kiese, and D.V. Murphy. 2011. Nitrous oxide fluxes from a grain-legume crop (narrow-leafed lupin) grown in a semiarid climate. Glob. Change Biol. 17:1153-1166. doi:10.1111/j.1365-2486.2010.02260.x
Basso, B., B. Dumont, B. Maestrini, I. Shcherbak, G.P. Robertson, J.R. Porter, P. Smith, K. Paustian, P.R. Grace, S. Asseng, S. Bassu, C. Biernath, K.J. Boote, D. Cammarano, G. De Sanctis, J.-L. Durand, F. Ewert, S. Gayler, D.W. Hyndman, J. Kent, P. Martre, C. Nendel, E. Priesack, D. Ripoche, A.C. Ruane, J. Sharp, P.J. Thorburn, J.L. Hatfield, J.W. Jones, and C. Rosenzweig. 2018. Soil organic carbon and nitrogen feedbacks on crop yields under climate change. Agric. Environ. Lett. 3. doi:10.2134/ael2018.05.0026
Basso, B., and J.T. Ritchie. 2015. Simulating crop growth and biogeochemical fluxes in response to land management using the SALUS model. In: S.K. Hamilton, J.E. Doll, and G.P. Robertson, editors, The Ecology of agricultural landscapes: Long-term research on the path to sustainability. Oxford Univ. Press, New York. p. 252-274.
Basso, B., D.W. Hyndman, A.D. Kendall, P.R. Grace, and G.P. Robertson. 2015. Can impacts of climate change and agricultural adaptation strategies be accurately quantified if crop models are annually re-initialized? PLoS One 10:e0127333. doi:10.1371/journal.pone.0127333
Basso, B., O. Gargiulo, K. Paustian, G.P. Robertson, C. Porter, P.R. Grace, and J.W. Jones. 2011. Procedures for initializing soil organic carbon pools in the DSSAT-CENTURY model for agricultural systems. Soil Sci. Soc. Am. J. 75. doi:10.2136/sssaj2010.0115
Bassu, S., N. Brisson, J.-L. Durand, K. Boote, J. Lizaso, J.W. Jones, C. Rosenzweig, A.C. Ruane, M. Adam, C. Baron, B. Basso, C. Biernath, H. Boogaard, S. Conijn, M. Corbeels, D. Deryng, G.D. Sanctis, S. Gayler, P. Grassini, J. Hatfield, S. Hoek, C. Izaurralde, R. Jongschaap, A.R. Kemanian, K.C. Kersebaum, S.-H. Kim, N.S. Kumar, D. Makowski, C. Muller, C. Nendel, E. Priesack, M.V. Pravia, F. Sau, I. Shcherbak, F. Tao, E. Teixeira, D. Timlin, and K. Waha. 2014. How do various maize crop models vary in their response to climate change factors? Glob. Change Biol. 20:2301-2320.
Bollmann, A., and R. Conrad. 1998. Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Glob. Change Biol. 4:387-396. doi:10.1046/j.1365-2486.1998.00161.x
Boone, R.D., K.J. Nadelhoffer, J.D. Canary, and J.P. Kaye. 1998. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570-572. doi:10.1038/25119
Bremner, J. 1997. Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosyst. 49:7-16. doi:10.1023/A:1009798022569
Broadbridge, P., and I. White. 1988. Constant rate rainfall infiltration: A versatile nonlinear model. Analytical solution. Water Resour. Res. 24:145-154. doi:10.1029/WR024i001p00145
Brümmer, C., N. Brüggemann, K. Butterbach-Bahl, U. Falk, J. Szarzynski, K. Vielhauer, R. Wassmann, and H. Papen. 2008. Soil-Atmosphere Exchange of N2O and NO in Near-Natural Savanna and Agricultural Land in Burkina Faso (W. Africa). Ecosystems 11:582-600. doi:10.1007/s10021-008-9144-1
Buttler, I.W., and S.J. Riha. 1992. Water fluxes in oxisols: A comparison of approaches. Water Resour. Res. 28:221-229. doi:10.1029/91WR02197
Cammarano, D., R.P. Rotter, S. Asseng, F. Ewert, D. Wallach, P. Martre, J.L. Hatfiled, J.W. Jones, C. Rosenzweig, A.C. Ruane, K.J. Boote, P.J. Thorburn, K.C. Kersebaum, P.K. Aggarwal, C. Angulo, B. Basso, P. Bertuzzi, C. Biernath, N. Brisson, A.J. Challinor, J. Doltra, S. Gayler, R. Goldberg, L. Heng, J. Hooker, L.A. Hunt, J. Ingwersen, R.C. Izaurralde, C. Muller, S.N. Kumar, C. Nendel, G.J. O’Leary, J.E. Olesen, T.M. Osborne, T. Palosuo, E. Priesack, D. Ripoche, M.A. Semenov, I. Schecherbak, P. Steduto, C.O. Stockle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, M. Travasso, K. Waha, J.W. White, and J. Wolf. 2016. Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2. Field Crops Res. 198:80-92. doi:10.1016/j.fcr.2016.08.015
Chapuis-Lardy, L., N. Wrage, A. Metay, J.-L. Chotte, and M. Bernoux. 2007. Soils, a sink for N2O? A review. Glob. Change Biol. 13:1-17. doi:10.1111/j.1365-2486.2006.01280.x
Chen, D.C., Y. Li, P.R. Grace, and A. Mosier. 2008. N2O emissions from agricultural lands: A synthesis of simulation approaches. Plant Soil 309:169-189.
Chung, S.O., and R. Horton. 1987. Soil heat and water flow with a partial surface mulch. Water Resour. Res. 23:2175-2186.
Clough, T.J., R.R. Sherlock, and D.E. Rolston. 2005. A review of the movement and fate of N2O in the subsoil. Nutr. Cycl. Agroecosyst. 72:3-11. doi:10.1007/s10705-004-7349-z
Coelho, D.T., and R.F. Dale. 1980. An energy-crop growth variable and temperature function for predicting maize growth and development: Planting to silking. Agron. J. 72:503-510. doi:10.2134/agronj1980.00021962007200030023x
Conrad, R. 2001. Evaluation of data on the turnover of NO and N2O by oxidative versus reductive microbial processes in different soils. Phyton (Horn) 41:61-72.
Crutzen, P.J. 1981. Atmospheric chemical processes of theoxides of nitrogen including nitrous oxide. In: C.C. Delwiche, editor, Denitrification, nitrification and atmospheric nitrous oxide. John Wiley & Sons, New York. p. 17-44.
Dalal, R.C., W. Wang, G.P. Robertson, and W.J. Parton. 2003. Nitrous oxide emission from Australian agricultural lands and mitigation options: A review. Soil Res. 41:165-195. doi:10.1071/SR02064
De Antoni Migliorati, M., M. Bell, P.R. Grace, C. Scheer, D.W. Rowlings, and S. Liu. 2015. Legume pastures can reduce N2O emissions intensity in subtropical cereal cropping systems. Agric. Ecosyst. Environ. 204:27-39. doi:10.1016/j.agee.2015.02.007
Del Grosso, S.J., D.S. Ojima, W.J. Parton, E. Stehfest, M. Heistemann, B. DeAngelo, and S. Rose. 2009. Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils. Global Planet. Change 67:44-50. doi:10.1016/j.gloplacha.2008.12.006
Del Grosso, S.J., W.J. Parton, C.A. Keough, and M. Reyes-Fox. 2011. Special features of the DayCent modeling package and additional procedures for parameterization, calibration, validation, and applications. In: L.R. Ahuja and L. Ma, editor, Methods of introducing system models into agricultural research. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, p. 155-176. doi:10.2134/advagricsystmodel2.c5
Del Grosso, S.J., W.J. Parton, A.R. Mosier, D.S. Ojima, A.E. Kulmala, and S. Phongpan. 2000. General model for N2O and N2 gas emissions from soils due to dentrification. Global Biogeochem. Cycles 14:1045-1060.
Durand, J.L., K. Delusca, K. Boote, J. Lizaso, R. Mandersceid, H.J. Weigel, A.C. Ruane, C. Rosenzweig, J. Jones, L. Ahuja, S. Anapalli, B. Basso, C. Baron, P. Bertuzzi, C. Biernath, D. Deryng, F. Ewert, T. Gaiser, S. Gayler, F. Heinlein, K.C. Kersebaum, S.H. Kim, C. Muller, C. Nendel, A. Olioso, E. Priesack, K.R. Villegas, D. Ripoche, R.P. Rotter, S.I. Seidel, A. Srivastava, F. Tao, D. Timlin, T. Twine, E. Wang, H. Webber, and Z. Zhao. 2017. How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield? Eur. J. Agron. doi:10.1016/j.eja.2017.01.002
Dwyer, L.M., H.N. Hayhoe, and J.L.B. Culley. 1990. Prediction of soil temperature from air temperature for estimating corn emergence. Can. J. Plant Sci. 70:619-628. doi:10.4141/cjps90-078
Ehhalt, D., M. Prather, F. Dentener, R. Derwent, E. Dlugokencky, E. Holland, I. Isaksen, J. Katima, V. Kirchhoff, P. Matson, P. Midgley, and M. Wang. 2001. Atmospheric chemistry and greenhouse gases. Climate change 2001: The scientific basis. In: J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson, editors, Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge. p. 239-287.
Elias, E.A., R. Cichota, H.H. Torriani, Q. Lier, and J. van Lier. 2004. Analytical soil-temperature model correction for temporal variation of daily amplitude. Soil Sci. Soc. Am. J. 68:784-788. doi:10.2136/sssaj2004.7840
Emerman, S.H. 1995. The tipping bucket equations as a model for macropore flow. J. Hydrol. 171:23-47. doi:10.1016/0022-1694(95)02735-8
Firestone, M.K., and E.A. Davidson. 1989. Microbiological basis of NO and N2O production and consumption in soils. In: Andreae, M.O., and D.S. Schimel, editors, Exchanges of trace gases between terrestrial ecosystems and the atmosphere. John Wiley & Sons, New York. Fitzpatrick, E.A., and H.A. Nix. 1969. A model for simulating soil water regime in alternating fallow-crop systems. Agric. Meteorol. 6:303-319. doi:10.1016/0002-1571(69)90023-5
Folorunso, O.A., and D.E. Rolston. 1984. Spatial variability of field-measured denitrification gas fluxes. Soil Sci. Soc. Am. J. 48:1214-1219. doi:10.2136/sssaj1984.03615995004800060002x
Friedl, J., C. Scheer, D.W. Rowlings, H.V. McIntosh, A. Strazzabosco, D.I. Warner, and P.R. Grace. 2016. Denitrification losses from an intensively managed sub-tropical pasture-Impact of soil moisture on the partitioning of N2 and N2O emissions. Soil Biol. Biochem. 92:58-66. doi:10.1016/j.soilbio.2015.09.016
Gaston, L. A., Locke, M. A., Zablotowicz, R. M., & Reddy, K. N. 2001. Spatial variability of soil properties and weed populations in the Mississippi Delta. Soil Science Society of America Journal, 65: 449-459. https://doi.org/10.2136/sssaj2001.652449x
Granli, T. and O.C. Bøckman. 1995. Nitrous oxide emissions from soils in warm climates. Fert. Res. 42:159-163. doi:10.1007/BF00750510
Gupta, S.C., W.E. Larson, and D.R. Linden. 1983. Tillage and surface residue effects on soil upper boundary temperatures. Soil Sci. Soc. Am. J. 47:1212-1218. doi:10.2136/sssaj1983.03615995004700060030x
Haas, E., S. Klatt, A. Fröhlich, P. Kraft, C. Werner, R. Kiese, R. Grote, L. Breuer, and K. Butterbach-Bahl. 2013. Landscape DNDC: A process model for simulation of biosphere-atmosphere-hydrosphere exchange processes at site and regional scale. Landsc. Ecol. 28:615-636.
Hillel, D. 1982. Introduction to soil physics. Academic Press, San Diego.
Hutchinson, G.L., and E.A. Davidson. 1993. Processes for production and consumption of gaseous nitrogen oxides in soil. In: D.E. Rolston, J.M. Duxbury, L.A. Harper, and A.R. Mosier, editors, Agricultural ecosystem effects on trace gases and global climate change. ASA, Madison, WI.
Jenny, H. 1941. Factors of soil formation: A system of quantitative pedology, Soil Science. Dover Publications, New York.
Jones, J.W., J.M. Antle, B. Basso, K.J. Boote, R.T. Conant, I. Foster, H.C.J. Godfray, M. Herrero, R.E. Howitt, S. Janssen, B.A. Keating, R. Munoz-Carpena, C.H. Porter, C. Rosenzweig, and T.R. Wheeler. 2017. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural system science. Agric. Syst. 155:269-298. doi:10.1016/j.agsy.2016.09.021
Jones, J.W., G. Hoogenboom, C.H. Porter, K.J. Boote, W.D. Batchelor, L. Hunt, P.W. Wilkens, U. Singh, A.J. Gijsman, and J.T. Ritchie. 2003. The DSSAT cropping system model. Eur. J. Agron. 18:235-265. doi:10.1016/S1161-0301(02)00107-7
Kaspar, T.C., and W.L. Bland. 1992. Soil temperature and root growth. Soil Sci. 154:290-299. doi:10.1097/00010694-199210000-00005
Kiese, R., and K. Butterbach-Bahl. 2002. N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia. Soil Biol. Biochem. 34:975-987. doi:10.1016/S0038-0717(02)00031-7
Lee, D.H., and L.M. Abriola. 1999. Use of the Richards equation in land surface parameterizations. J. Geophys. Res. 104:27519-27526. doi:10.1029/1999JD900951
Li, C., S. Frolking, and K. Butterbach-Bahl. 2005a. Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Clim. Change 72:321-338. doi:10.1007/s10584-005-6791-5
Li, Y., D. Chen, Y. Zhang, R. Edis, and H. Ding. 2005b. Comparison of three modeling approaches for simulating denitrification and nitrous oxide emissions from loam-textured arable soils. Global Biogeochem. Cycles 19:GB3002. doi:10.1029/2004GB002392
Li, C., J. Cui, G. Sun, and C. Trettin. 2004. Modeling impacts of management on carbon sequestration and trace gas emissions in forested wetland ecosystems. Environ. Manage. 33:S176-S186. doi:10.1007/s00267-003-9128-z
Li, C., J. Aber, F. Stange, K. Butterbach-Bahl, and H. Papen. 2000. A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. J. Geophys. Res., D, Atmospheres 105:4369-4384. doi:10.1029/1999JD900949
Li, C., S. Frolking, and T.A. Frolking. 1992. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J. Geophys. Res., D, Atmospheres 97:9759-9776. doi:10.1029/92JD00509
Liu, B., P.T. Mørkved, Å. Frostegård, and L.R. Bakken. 2010. Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol. Ecol. 72:407-417. doi:10.1111/j.1574-6941.2010.00856.x
Loomis, R.S., and D.J. Connor. 1998. Crop ecology: Productivity and management in agricultural systems. Cambridge Univ. Press., Cambridge.
Luo, V., R.S. Loomis, and T.C. Hsiao. 1992. Simulation of soil temperature in crops. Agric. For. Meteorol. 61:23-38. doi:10.1016/0168-1923(92)90023-W
Maestrini, B., & Basso, B. 2018. Drivers of within-field spatial and temporal variability of crop yield across the US Midwest. Scientific Reports, 8(1), 14833. https://doi.org/10.1038/s41598-018-32779-3
Martre, P., D. Wallach, S. Asseng, F. Ewert, J.W. Jones, R.P. Rötter, K.J. Boote, A.C. Ruane, P.J. Thorburn, D. Cammarano, J.L. Hatfield, C. Rosenzweig, P.K. Aggarwal, C. Angulo, B. Basso, P. Bertuzzi, C. Biernath, N. Brisson, A.J. Challinor, J. Doltra, S. Gayler, R. Goldberg, R.F. Grant, L. Heng, J. Hooker, L.A. Hunt, J. Ingwersen, R.C. Izaurralde, K.C. Kersebaum, C. Müller, S.N. Kumar, C. Nendel, G. Oleary, J.E. Olesen, T.M. Osborne, T. Palosuo, E. Priesack, D. Ripoche, M.A. Semenov, I. Shcherbak, P. Steduto, C.O. Stöckle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, M. Travasso, K. Waha, J.W. White, and J. Wolf. 2014. Multimodel ensembles of wheat growth: Many models are better than one. Glob. Change Biol. 21:911-925. doi:10.1111/gcb.12768
McCann, I.R., M.J. Mcfarland, and J.A. Witz. 1991. Near-surface bare soil temperature model for biophysical models. Trans. ASAE 34:748-755. doi:10.13031/2013.31726
Meier, E.A., P.J. Thorburn, and M.E. Probert. 2006. Occurrence and simulation of nitrification in two contrasting sugarcane soils from the Australian wet tropics. Soil Res. 44:1-9. doi:10.1071/SR05004
Mosier, A.R., R. Wassmann, L. Verchot, J. King, and C. Palm. 2004. Methane and nitrogen oxide fluxes in tropical agricultural soils: Sources, sinks and mechanisms. Environ. Dev. Sustain. 6:11-49. doi:10.1023/B:ENVI.0000003627.43162.ae
Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12:513-522. doi:10.1029/WR012i003p00513
Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, and H. Zhang. 2013. Anthropogenic and natural radiative forcing. Climate Change 2013: The physical science basis. In: T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, editors, Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge.
Nawar, S., & Mouazen, A. M. (2017). Predictive performance of mobile vis-near infrared spectroscopy for key soil properties at different geographical scales by using spiking and data mining techniques. Catena, 151, 118-129. https://doi.org/10.1016/j.catena.2016.12.014
Novak, M. 2005. Soil temperature. In: J.L. Hatfield, J.M. Baker, and M.K. Viney, editors, Micrometeorology in agricultural systems. Agronomy Monograph 47. American Society of Agronomy, Madison, WI.
O’Halloran, I. P., von Bertoldi, A. P., & Peterson, S. 2004. Spatial variability of barley (Hordeum vulgare) and corn (Zea mays L. ) yields, yield response to fertilizer N and soil N test levels. Canadian Journal of Soil Science, 84, 307-316.
Panek, J.A., P.A. Matson, I. Ortiz-Monasterio, and P. Brooks. 2000. Distinguishing nitrification and denitrification sources of N2O in a Mexican wheat system using 15N. Ecol. Appl. 10:506-514.
Park, S., P. Croteau, K.A. Boering, D.M. Etheridge, D. Ferretti, P.J. Fraser, K.R. Kim, P.B. Krummel, R.L. Langenfelds, T.D. Van Ommen, and L.P. Steele. 2012. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat. Geosci. 5:261-265. doi:10.1038/ngeo1421
Parton, W.J., E.A. Holland, S.J.D. Grosso, M.D. Hartman, R.E. Martin, A.R. Mosier, D.S. Ojima, and D.S. Schimel. 2001. Generalized model for NOx and N2O emissions from soils. J. Geophys. Res. 106:17403-17419.
Parton, W.J., A.R. Mosier, D.S. Ojima, D.W. Valentine, D.S. Schimel, K. Weier, and A.E. Kulmala. 1996. Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochem. Cycles 10:401-412. doi:10.1029/96GB01455
Parton, W.J., D.S. Ojima, C.V. Cole, and D.S. Schimel. 1994. A general model for soil organic matter dynamics: Sensitivity to litter chemistry, texture and management. In: R.B. Bryant and R.W. Arnold, editors, Quantitative modeling of soil forming processes. Soil Science Society of America, Madison, WI. p. 147-167.
Parton, W.J. 1984. Predicting soil temperature in a shortgrass steppe. Soil Sci. 138:93-101. doi:10.1097/00010694-198408000-00001
Philip, J.R. 1966. Plant water relations: Some physical aspects. Annu. Rev. Plant Physiol. 17:245-268. doi:10.1146/annurev.pp.17.060166.001333
Porter, C.H., J.W. Jones, S. Adiku, A.J. Gijsman, O. Gargiulo, and J.B. Naab. 2010. Modeling organic carbon and carbon-mediated soil processes in DSSAT v4.5. Operational Research 10:247-278. doi:10.1007/s12351-009-0059-1
Potter, K.N., and J.R. Williams. 1994. Predicting daily mean soil temperatures in the EPIC simulation model. Agron. J. 86:1006-1011. doi:10.2134/agronj1994.00021962008600060014x
Ravishankara, A., J.S. Daniel, and R.W. Portmann. 2009. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326:123-125. doi:10.1126/science.1176985
Richards, L.A. 1931. Capillary conductivity of liquid through porous media. Physics 1:318-333. doi:10.1063/1.1745010
Ritchie, J.T. 1972. A model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 8:1204-1213. doi:10.1029/WR008i005p01204
Ritchie, J.T. 1981a. Water dynamics in the soil-plant-atmosphere. Plant Soil 58:81-96. doi:10.1007/BF02180050
Ritchie, J.T. 1981b. Soil water availability. Plant Soil 58:327-338. doi:10.1007/BF02180061
Ritchie, J.T. 1998. Soil water balance and plant water stress. In: G.Y. Tsuji, G. Hoogenboom, and P.K. Thornton, editors, Understanding options of agricultural production. Kluwer Academic Publishers and International Consortium for Agricultural Systems Applications, Dordrecht, The Netherlands. p. 41-54. doi:10.1007/978-94-017-3624-4_3
Robertson, G.P., and P.M. Groffman. 2007. Nitrogen transformations. Soil microbiology, ecology, and biochemistry. p. 341-364. doi:10.1016/B978-0-08-047514-1.50017-2
Sándor, R., Z. Barcza, M. Acutis, L. Doro, D. Hidy, M. Kochy, J. Minet, E. Lellei-Kovacs, S. Ma, A. Perego, S. Rolinski, F. Ruget, M. Sanna, G. Seddaiu, L. Wu, and G. Bellocchi. 2017. Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance. Eur. J. Agron. 88:22-40. doi:10.1016/j.eja.2016.06.006
Scheer, C., P.R. Grace, D.W. Rowlings, and J. Payero. 2013. Soil N2O and CO2 emissions from cotton in Australia under varying irrigation management. Nutr. Cycl. Agroecosyst. 95:43-56. doi:10.1007/s10705-012-9547-4
Schelde, K., P. Cellier, T. Bertolini, T. Dalgaard, T. Weidinger, M. Theobald, and J.E. Olesen. 2012. Spatial and temporal variability of nitrous oxide emissions in a mixed farming landscape of Denmark. Biogeosciences 9:2989-3002. doi:10.5194/bg-9-2989-2012
Sharpley, A.N., and J.R. Williams. 1990. EPIC erosion/productivity impact calculator: 1. Model documentation. United States Department of Agriculture Technical Bulletin No. 1768, U.S. Government Printing Office, Washington, D.C.
Shcherbak, I., N. Millar, and G.P. Robertson. 2014. Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 111:9199-9204. doi:10.1073/pnas.1322434111
Šimek, M., and J.E. Cooper. 2002. The influence of soil pH on denitrification: Progress towards the understanding of this interaction over the last 50 years. Eur. J. Soil Sci. 53:345-354. doi:10.1046/j.1365-2389.2002.00461.x
Šimůnek, J., M.T. Van Genuchten, and M. Sejna. 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J. 7:587-600. doi:10.2136/vzj2007.0077
Šimůnek, J., T. Vogel, and M.Th. Van Genuchten. 1992. The SWMS_2D code for simulating water flow and solute transport in two-dimensional variably saturated media, version 1.1. Research Report No. 126. U. S. Salinity Lab, ARS USDA, Riverside, CA.
Soil Conservations Service (SCS). 1972. National engineering handbook, Hydrology Section 4. United States Department of Agriculture, Washington, D.C.
Stehfest, E., and C. Müller. 2004. Simulation of N2O emissions from a urine-affected pasture in New Zealand with the ecosystem model DayCent. J. Geophys. Res.: Atmos. 109(D3): D03109.
Thorburn, P.J., J.S. Biggs, K. Collins, and M.E. Probert. 2010. Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems. Agric. Ecosyst. Environ. 136:343-350. doi:10.1016/j.agee.2009.12.014
US-EPA. 2010. Methane and nitrous oxide emissions from natural sources. Office of Atmospheric Programs, Washington, D.C.
Van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898. doi:10.2136/sssaj1980.03615995004400050002x
van der Laan, M., J.G. Annadale, K.L. Bristow, R.J. Stirzaker, C.C. du Preez, and P.J. Thorburn. 2014. Modeling nitrogen leaching: Are we getting the right answer for the right reason? Agric. Water Manage. 133:74-80. doi:10.1016/j.agwat.2013.10.017
Vinocur, M.G., and J.T. Ritchie. 2001. Maize leaf development biases caused by air-apex temperature differences. Agron. J. 93:767-772. doi:10.2134/agronj2001.934767x
Webber, H., P. Martre, S. Asseng, B. Kimball, J. White, M. Ottman, G.W. Wall, G. De Sanctis, J. Doltra, R. Grant, B. Kassie, A. Maiorano, J.E. Olesen, D. Ripoche, E.E. Rezaei, M.A. Semenov, P. Stratonovitch, and F. Ewert. 2017. Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison. Field Crops Res. 202:21-35. doi:10.1016/j.fcr.2015.10.009
Webster, R. 2001. Statistics to support soil research and their presentation. Eur. J. Soil Sci. 52:331-340. doi:10.1046/j.1365-2389.2001.00383.x
Werner, C., X. Zheng, J. Tang, B. Xie, C. Liu, R. Kiese, and K. Butterbach-Bahl. 2006. N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China. Plant Soil 289:335-353. doi:10.1007/s11104-006-9143-y
White, D.H., S.M. Howden, and H.A. Nix. 1993. Modelling agricultural and pastoral systems. In: A.J. Jakeman, M.B. Beck, and M.J. McAleer, editors, Modelling change in environmental systems. John Wiley & Sons Ltd, Australia.
Wierenga, P.J., and C.T. de Wit. 1970. Simulation of heat flow in soils. Soil Sci. Soc. Am. Proc. 34:845-848. doi:10.2136/sssaj1970.03615995003400060012x
Williams, P.H., S.C. Jarvis, and E. Dixon. 1998. Emission of nitric oxide and nitrous oxide from soil under field and laboratory conditions. Soil Biol. Biochem. 30:1885-1893. doi:10.1016/S0038-0717(98)00052-2