No full text
Unpublished conference/Abstract (Scientific congresses and symposiums)
Ergodic behavior of transformations associated with alternate base expansions
Cisternino, Célia
2020One World Numeration Seminar
 

Files


Full Text
No document available.

Send to



Details



Keywords :
Alternate bases; Real numbers; Representations; Transformation; Ergodicity; Measure
Abstract :
[en] We consider a p-tuple of real numbers greater than 1, 𝛃=(𝛽_1,…,𝛽_p), called an alternate base, to represent real numbers. Since these representations generalize the 𝛽-representation introduced by Rényi in 1958, a lot of questions arise. In this talk, we will study the transformation generating the alternate base expansions (greedy representations). First, we will compare the 𝛃-expansion and the (𝛽_1*…*𝛽_p)-expansion over a particular digit set and study the cases when the equality holds. Next, we will talk about the existence of a measure equivalent to Lebesgue, invariant for the transformation corresponding to the alternate base and also about the ergodicity of this transformation. This is a joint work with Émilie Charlier and Karma Dajani.
Disciplines :
Mathematics
Author, co-author :
Cisternino, Célia ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Ergodic behavior of transformations associated with alternate base expansions
Publication date :
26 May 2020
Event name :
One World Numeration Seminar
Event date :
de Mai 2020 à Juillet 2020
By request :
Yes
Audience :
International
References of the abstract :
https://www.irif.fr/~numeration/OWNS
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 19 June 2020

Statistics


Number of views
70 (7 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi