The University of Liège wishes to use cookies or trackers to store and access your personal data, to perform audience measurement. Some cookies are necessary for the website to function. Cookie policy.
[en] BACKGROUND
Whole-body irradiation has been associated with renal ischemic preconditioning in mice. Here, we investigate the functional and fundamental impact of radiotherapy centered on the kidneys before renal ischemia/reperfusion (I/R) in mice.
METHODS
Experience1: Animals (n=6) were anesthetized and placed in the irradiator. Two beams of X-rays (225Kv, 13 mA) specifically targeted both kidneys to deliver a dose a 8,56Gy. One month later, a right nephrectomy was performed, and a left renal ischemia was induced for 30min. After 48 hours of reperfusion, the left kidney was collected, as well as blood. Control group (n=6) underwent a similar renal I/R procedure, with no prior irradiation. Experience 2: Unilateral irradiation of the left kidney (8.56 Gy) was performed in mice (n=10). One month later, the left (irradiated) kidney was collected. Additionally, the left kidneys were collected from non-irradiated mice (n=5). Total RNAs were extracted from irradiated and control kidneys to perform comparative high-throughput RNA-Seq. BaseSpace Sequence Hub Illumina was used. Functional enrichment analysis was performed using DAVID program. Both experimental protocols have been approved by the IACUC of ULiège, Liège, Belgium.
RESULTS
Following kidney I/R, blood urea nitrogen (BUN) levels were significantly lower in pre-irradiated mice (148.4±93.1) compared to controls (495.7±33.3, p<0.01). The number of PCNA-positive proliferating cells was significantly lower in pre-irradiated mice (130.8±52.7) compared to controls (545.4±257.3, p<0.001). The renal infiltration by inflammatory CD11b-positive cells (90.2±32.2 vs. 414.5±148.6) and F4-80-positive macrophages (80.6±22.9 vs. 178.5±68) was significantly reduced in pre-irradiated animals vs. controls. Comparative transcriptomics showed a significant up-regulation of various signaling pathways, including angiogenesis (HMOX1) and stress response (HSPA1A, HSPA1B), and a down-regulation of oxidoreduction (NOX4).
CONCLUSION
Kidney irradiation induces ischemic preconditioning in mice, with improved renal function and decreased inflammation following renal I/R. The aforementioned signaling pathways may play a role in irradiation-associated kidney resistance to I/R.
Research Center/Unit :
GIGA‐R - Giga‐Research - ULiège Centre Hospitalier Universitaire de Liège - CHU Liège
Disciplines :
Urology & nephrology
Author, co-author :
Khbouz, Badr ; Université de Liège - ULiège > Département des sciences cliniques > Néphrologie