[en] Noisy multi-way data sets are ubiquitous in many domains. In neuroscience, electroencephalogram (EEG) data are recorded during periodic stimulation from different sensory modalities, leading to steady-state (SS) recordings with at least four ways: the channels, the time, the subjects and the modalities. Improving the signal-to-noise ratio (SNR) of the SS responses is crucial to enable their practical use. Supervised spatial filtering methods can be considered for this purpose to relevantly guide the extraction of specific activity patterns. Nevertheless, such approaches are difficult to validate with few subjects and can process at most two data ways simultaneously, the remaining ones being either averaged or considered independently despite their dependencies. This paper hence designs unsupervised tensor factorization models to enable identifying meaningful underlying structures characterized in all ways of multimodal SS data. We show on EEG recordings from 15 subjects that such factorizations faithfully reveal consistent spatial topographies, time courses with enhanced SNR and subject variations of the periodic brain activity.
Disciplines :
Neurology
Author, co-author :
Mulders, Dounia; Université Catholique de Louvain - UCL > Institute of NeuroScience
de Bodt, Cyril; Université Catholique de Louvain - UCL
Lejeune, Nicolas ; Université de Liège - ULiège > Form. doct. sc. méd. (paysage)
Lee, John Aldo; Université Catholique de Louvain - UCL
Mouraux, André; Université Catholique de Louvain - UCL > Insitute of NeuroScience
Verleysen, Michel; Université Catholique de Louvain - UCL
Language :
English
Title :
Tensor factorization to extract patterns in multimodal EEG data
Publication date :
2019
Event name :
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. Phan. Tensor decompositions for signal processing applications: From two-way to multiway component analysis. IEEE Signal Processing Magazine, 32(2):145–163, 2015.
E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup. Scalable tensor factorizations with missing data. In Proceedings of the 2010 SIAM international conference on data mining, pages 701–712. SIAM, 2010.
A. Hyvärinen. Independent component analysis: recent advances. Phil. Trans. R. Soc. A, 371(1984):20110534, 2013.
D. Mulders, C. de Bodt, N. Lejeune, A. Mouraux, and M. Verleysen. Spatial filtering of EEG signals to identify periodic brain activity patterns. In LVA-ICA, pages 524–533. Springer, 2018.
R. Sameni, C. Jutten, and M. B. Shamsollahi. Multichannel electrocardiogram decomposition using periodic component analysis. IEEE transactions on biomedical engineering, 55(8):1935–1940, 2008.
M. Cohen and R. Gulbinaite. Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation. NeuroImage, 147:43–56, 2017.
B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Müller. Single-trial analysis and classification of ERP components – a tutorial. NeuroImage, 56(2):814–825, 2011.
N. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. Papalexakis, and C. Faloutsos. Tensor decomposition for signal processing and machine learning. IEEE Transactions on Signal Processing, 65(13):3551–3582, 2017.
T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review, 51(3):455–500, 2009.
F. Miwakeichi, E. Martınez-Montes, P. A. Valdés-Sosa, N. Nishiyama, H. Mizuhara, and Y. Yamaguchi. Decomposing EEG data into space–time–frequency components using parallel factor analysis. NeuroImage, 22(3):1035–1045, 2004.
M. Mørup, L. K. Hansen, and S. M. Arnfred. ERPWAVELAB: A toolbox for multichannel analysis of time–frequency transformed event related potentials. Journal of neuroscience methods, 161(2):361–368, 2007.
E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and B. Yener. Multiway analysis of epilepsy tensors. Bioinformatics, 23(13):i10–i18, 2007.
F. Cong, Q.-H. Lin, L.-D. Kuang, X.-F. Gong, P. Astikainen, and T. Ristaniemi. Tensor decomposition of EEG signals: a brief review. Journal of neuroscience methods, 248:59–69, 2015.
E. Acar, D. M. Dunlavy, and T. G. Kolda. A scalable optimization approach for fitting canonical tensor decompositions. Journal of Chemometrics, 25(2):67–86, 2011.
B. W. Bader, T. G. Kolda, et al. Matlab tensor toolbox version 2.6. Available online, February 2015.