Linear filtering; Specific periodic components; Generalized Rayleigh Quotient; Source separation; Steady-states; EEG
Abstract :
[en] Extracting relevant information from noisy multidimensional signals has tremendous impacts in numerous applications, ranging from audio separation to electrophysiological recording analysis. Linear filters are often considered to reconstruct and interpret the latent sources generating the data. Known properties of the sources can be used to guide their separation. In neuroscience, the cortical processes underlying perception in different modalities (visual, auditory, ...) is often studied using electroencephalography (EEG) during periodic stimulation, eliciting periodic activity in neural sources, some of which being specific to the considered modality. Whereas current approaches extract sources either periodic or discriminative, none of them accounts for both aspects at once. This paper proposes several methods extracting periodic sources specific between two classes, hence termed as Linear Periodic Discriminant Analysis methods. They are validated on synthetic data and EEG recordings of subjects to whom periodic stimulation from two modalities is applied. The methods highlight modality-specific periodic responses.
Disciplines :
Neurology
Author, co-author :
Mulders, Dounia; Université Catholique de Louvain - UCL
de Bodt, Cyril; Université Catholique de Louvain - UCL
Lejeune, Nicolas ; Université de Liège - ULiège > Form. doct. sc. méd. (paysage)
Mouraux, André; Université Catholique de Louvain - UCL > Institute of NeuroScience
Verleysen, Michel; Université Catholique de Louvain - UCL
Language :
English
Title :
Linear Periodic Discriminant Analysis of Multidimensional Signals
Publication date :
2018
Event name :
International Conference on Neural Information Processing
Event place :
Siem Reap, Cambodia
Event date :
du 13/12/2018 au 16/12/2018
Audience :
International
Main work title :
Neural Information Processing. ICONIP 2018.
Author, co-author :
Cheng, L.
Leung, A.
Ozawa, S.
Collection name :
Lecture Notes in Computer Science, vol 11306. Springer, Cham
Bedard, C., Kroeger, H., Destexhe, A.: Does the 1/f frequency scaling of brain signals reflect self-organized critical states? Phys. rev. let. 97(11), 118102 (2006)
Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2008)
Colon, E., Legrain, V., Mouraux, A.: Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain. Clin. Neurophysiol. 42(5), 315–323 (2012)
De Keyser, R., van den Broeke, E.N., Courtin, A., Dufour, A., Mouraux, A.: Event-related brain potentials elicited by high-speed cooling of the skin: a robust and non-painful method to assess the spinothalamic system in humans. Clin. Neurophysiol. 129(5), 1011–1019 (2018)
Hyvärinen, A.: Independent component analysis: recent advances. Phil. Trans. R. Soc. A 371(1984), 20110534 (2013)
Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)
Jutten, C., Herault, J.: Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Process. 24(1), 1–10 (1991)
Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, New York (2014)
Lotte, F., Guan, C.: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE TBME 58(2), 355–362 (2011)
Makeig, S., Bell, A.J., Jung, T.P., Sejnowski, T.J.: Independent component analysis of electroencephalographic data. In: Advances in Neural Information Processing Systems, pp. 145–151 (1996)
Mouraux, A., Iannetti, G.D., Colon, E., Nozaradan, S., Legrain, V., Plaghki, L.: Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. J. Neurosci. 31(16), 6079–6087 (2011)
Mulders, D., de Bodt, C., Lejeune, N., Mouraux, A., Verleysen, M.: Spatial filtering of EEG signals to identify periodic brain activity patterns. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M.D., Ward, D. (eds.) LVA/ICA 2018. LNCS, vol. 10891, pp. 524–533. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93764-9 48
Nakanishi, M., Wang, Y., Wang, Y.T., Mitsukura, Y., Jung, T.P.: A high-speed brain speller using steady-state visual evoked potentials. Int. J. Neural Syst. 24(06), 1450019 (2014)
Samadi, S., Amini, L., Cosandier-Rimélé, D., Soltanian-Zadeh, H., Jutten, C.: Reference-based source separation method for identification of brain regions involved in a reference state from intracerebral EEG. IEEE Trans. Biomed. Eng. 60(7), 1983–1992 (2013)
Sameni, R., Jutten, C., Shamsollahi, M.B.: Multichannel electrocardiogram decomposition using periodic component analysis. IEEE Trans. Biomed. Eng. 55(8), 1935–1940 (2008)
Sameni, R., Jutten, C., Shamsollahi, M.B.: A deflation procedure for subspace decomposition. IEEE Trans. Signal Process. 58(4), 2363–2374 (2010)
Saul, L.K., Allen, J.B.: Periodic component analysis: an eigenvalue method for representing periodic structure in speech. In: Advances in Neural Information Processing Systems, pp. 807–813 (2001)
Vincent, E., Bertin, N., Gribonval, R., Bimbot, F.: From blind to guided audio source separation: how models and side information can improve the separation of sound. IEEE Signal Process. Mag. 31(3), 107–115 (2014)
Wu, W., Chen, Z., Gao, S., Brown, E.N.: A probabilistic framework for learning robust common spatial patterns. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 4658–4661 (2009)