Anderson SL, McIntosh L (1991) Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J Bacteriol 173:2761–2767
Atteia A, Adrait A, Brugière S et al (2009) A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Mol Biol Evol 26(7):1533–1548
Backer D, Saniez MH (2005) Soluble highly branched glucose polymers and their method of production. US6861519 B2
Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C (2011) The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot 62(6):1775–1801. https://doi.org/10.1093/jxb/erq411
Barbier G, Oesterhelt C, Larson MD, Halgren RG, Wilkerson C, Garavito RM, Benning C, APM W (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuriaria and significant differences in carbohydrate metabolism of both algae. Plant Physiol 137:460–474. https://doi.org/10.1104/pp.104.051169.460
Barclay WR (1992) Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids. Adv Biores 1:40–45
Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129. https://doi.org/10.1007/BF02186066
Barsanti L, Vismara R, Passarelli V, Gualtieri PJ (2001) Paramylon (β-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis: effects of growth conditions. J Appl Phycol 13:59–65
Bäumer D, Preisfeld A, Ruppel HG (2001) Isolation and characterization of paramylon synthase from Euglena gracilis (Euglenophyceae). J Phycol 37:38–46
Bernhard K (1989) Synthetic astaxanthin. The route of a carotenoid from research to commercialisation. In: Krinsky NI, Mathews-Roth MM, Taylor RF (eds) Carotenoids: chemistry and biology. Springer, Boston, MA, pp 337–363. https://doi.org/10.1007/978-1-4613-0849-2_24
Bottone C, Camerlingo R, Miceli R, Salbitani G, Sessa G, Pirozzi G, Carfagna S (2018) Antioxidant and anti-proliferative properties of extracts from heterotrophic cultures of Galdieria sulphuraria. Nat Prod Res 6419:1–5. https://doi.org/10.1080/14786419.2018.1425853
Bouyam S, Choorit W, Sirisansaneeyakul S, Chisty Y (2017) Heterotrophic production of Chlorella sp. TISTR 8990 – biomass growth and composition under various production conditions. Biotechnol Prog 33:1589–1600
Boyle NR, Sengupta N, Morgan JA (2017) Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii. PLoS One 12(5):e0177292. https://doi.org/10.1371/journal.pone. 0177292
Brock TD (1978) The genus Cyanidium. In: Brock TD (ed) Thermophilic microorganisms and life at high temperatures. Springer, New York, pp 255–302
Buetow DE (1989) The mitochondrion. In: Buetow DE (ed) The biology of Euglena, vol IV. Academic, New York and London, pp 247–314
Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 91:31–46
Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3:203–209. https://doi.org/10.1007/BF00003578
Chen F, Johns MR (1994) Substrate inhibition of Chlamydomonas reinhardtii by acetate in heterotrophic culture. Process Biochem 29:245–252
Chen Y-H, Walker TH (2011) Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnol Lett 33:1973. https://doi. org/10.1007/s10529-011-0672-y
Chen G-Q, Jiang Y, Chen F (2008) Salt-induced alterations in lipid composition of diatom Nitzschia laevis (bacillariophyceae) under heterotrophic culture condition. J Phycol 44:1309–1314. https://doi.org/10.1111/j.1529-8817.2008.00565.x
Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545. https://doi.org/10.1016/j.procbio.2007.08.008
Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306
Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R (2015) Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol 8:190–209. https://doi.org/10.1111/1751-7915.12167
Da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153
de Marchin T, Erpicum M, Franck F (2015) Photosynthesis of Scenedesmus obliquus in outdoor open thin-layer cascade system in high and low CO2 in Belgium. J Biotechnol 215:2–12
De Swaaf ME, de Rijk TC, Eggink G, Sijtsma L (1999) Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. In: Osinga R, Tramper J, Burgess JG, Wijffels RH (eds) Marine bioprocess engineering. Progress in industrial microbiology. Elsevier, The Netherlands, pp 185–192. https://doi.org/10.1016/S0079-6352(99)80111-8
De Swaaf ME, Sijtsma L, Pronk JT (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672
Demmig-Adams B, Adams WW (2002) Antioxidants in photosynthesis and human nutrition. Science 298(5601):2149–2153. https://doi.org/10.1126/science.1078002
Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Kruse O (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H(2) production. J Biotechnol 131:27–33
Doemel WN, Brock TD (1971) The physiological ecology of Cyanidium caldarium. J Gen Microbiol 67:17–32
dos Santos AM, Vieira KR, Sartori RB, dos Santos AM, Queiros MI, Zepka LQ, Jacob-Lopez E (2017) Heterotrophic cultivation of cyanobacteria: study of effect of exogenous sources of organic carbon, absolute amount of nutrients, and stirring speed on biomass and lipid productivity. Frontiers Bioeng Biotech 5:12
Doucha J, Livansky K (2012) Production of high-density Chlorella culture grown in fermenters. J Appl Phycol 24:35–43
Durante L, Hübner W, Lauersen KJ, Remacle C (2019) Characterization of the GPR1/FUN34/ YaaH protein family in the green microalga Chlamydomonas suggests their role as intracellular membrane acetate channels. Plant Direct 3(6):e00148. https://doi.org/10.1002/pld3.148
Ejiofor AO, Chisty Y, Moo-Young M (1996) Culture of Saccharomyces cerevisiae on hydrolyzed waste cassava starch for production of baking-quality yeast. Enzym Microb Technol 18:519–525
Ekman P, Yu S, Pedersen M (1991) Effects of altered salinity, darkness and algal nutrient status on floridoside and starch content, α-galactosidase activity and agar yield of cultivated Gracilaria sordida. Br Phycol J 26:123–131
Endo H, Nakajima K, Chino R, Shirota M (1974) Growth characteristics and cellular components of Chlorella regularis, heterotrophic fast growing strain. Agr Biol Chem 38:9–18
Eriksen NT (2008) Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14. https://doi.org/10.1007/s00253-008-1542-y
Ethier S, Woisard K, Vaughan D, Wen Z (2011) Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol 102:88–93. https://doi.org/10.1016/j.biortech.2010.05.021
Falaise C, François C, Travers MA et al (2016) Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Mar Drugs 14(9):1–27
Fan J, Zheng L (2017) Acclimation to NaCl and light stress of heterotrophic Chlamydomonas reinhardtii for lipid accumulation. J Biosci Bioeng 124(3):302–308. https://doi.org/10.1016/j. jbiosc.2017.04.009
Fujita T, Aoyagi H, Ogbonna JC, Tanaka H (2008) Effect of mixed organic substrate on α-tocopherol production by Euglena gracilis in photoheterotrophic culture. Appl Microbiol Biotechnol 79:371–378
Gérin S, Mathy G, Franck F (2014) Modeling the dependence of respiration and photosynthesis upon light, acetate, carbon dioxide, nitrate and ammonium in Chlamydomonas reinhardtii using design of experiments and multiple regression. BMC Systems Biol 8:96
Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci 81:193–208
Gladue R, Maxey JE (1994) Microalgal feeds for aquaculture. J Appl Phycol 6:131–141
Goldemberg SH, Marechal LR (1963) Biosynthesis of paramylon in Euglena gracilis. Biochim Biophys Acta 71:743–744
Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34:1396–1412. https://doi.org/10.1016/J.BIOTECHADV.2016.10.005
Graziani G, Schiavo S, Nicolai MA, Buono S, Fogliano V, Pinto G, Pollio A (2013) Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food Funct 4(1):144–152. https://doi.org/10.1039/c2fo30198a
Grimm P, Risse JM, Cholewa D et al (2015) Applicability of Euglena gracilis for biorefineries demonstrated by the production of α-tocopherol and paramylon followed by anaerobic digestion. J Biotechnol 215:72–79
Gross W (1999) Revision of comparative traits for the acid-and thermo-philic red algae Cyanidium and Galdieria. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publishers, London, pp 439–446
Gross W, Oesterhelt C (1999) Ecophysiological studies on the red alga Galdieria sulphuraria isolated from Southwest Iceland. Plant Biol 1:694–700
Gross W, Schnarrenberger C (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol 36(4):633–638. https://doi.org/10.1093/oxfordjournals.pcp.a078803
Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Mar Drugs 9(4):625–644. https://doi.org/10.3390/md9040625
Guidossi T, Marison I, Devery R, Gaffney D, Forde C (2017) Characterization and optimization of a fermentation process for the production of high cell densities and lipids using heterotrophic cultivation of Chlorella protothecoides. Ind Biotechnol 13:253–259
Hagemann M, Pade N (2015) Heterosides – compatible solutes occurring in prokaryotic and eukaryotic phototrophs. Plant Biol 17:927–934
Hamilton ML, Powers S, Napier JA, Sayanova O (2016) Heterotrophic production of omega-3 long-chain polyunsaturated fatty acids by trophically converted marine diatom Phaeodactylum tricornutum. Mar Drugs 14:53. https://doi.org/10.3390/md14030053
Hellio C, Simon-Colin C, Clare A, Deslandes E (2004) Isethionic acid and floridoside isolated from the red alga Grateloupia turuturu inhibit settlement of Balanus amphitrite crypid larvae. Biofouling 20:139–145
Hicks GR, Hironaka CM, Dauvillee D, Funke RP, D’Hulst C, Waffenschmidt S, Ball SG (2001) When simpler is better. Unicellular green algae for discovering new genes and functions in carbohydrate metabolism. Plant Physiol 127(4):1334–1338
Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196. https://doi.org/10.1080/10408690590957188
Hoffmeister M, van der Klei A, Rotte C et al (2004) Euglena gracilis rhodoquinone:ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions. J Biol Chem 279:22422–22429
Hoffmeister M, Piotrowski M, Nowitzki U, Martin W (2005) Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J Biol Chem 280:4329–4338
Holm-Hansen O (1968) Ecology, physiology and biochemistry of blue-green algae. Ann Rev Microbiol 22:47–70
Hong Z, Zhang Z, Olson JM, Verma DP (2001) A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell 13:769–779
Hu H, Gao K (2003) Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnol Lett 25:421–425. https://doi.org/10.1023/A:1022489108980
Hu J, Nagarajan D, Zhang Q, Chang JS, Lee DJ (2018) Heterotrophic cultivation of microalgae for pigment production: a review. Biotechnol Adv 36:54–67. https://doi.org/10.1016/J. BIOTECHADV.2017.09.009
Hutner SH, Bach MK, Ross GTM (1956) A sugar-containing basal medium for vitamin B-12 assay with Euglena: application to body fluids. J Protozool 3:101–105
Im C-S, Eberhard S, Huang K, Beck CF, Grossman AR (2006) Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Plant J 48:1–16. https://doi.org/10.1111/j.1365-313X.2006.02852.x
Inui H, Miyatake K, Nakano Y, Kitaoka S (1982) Wax ester fermentation in Euglena gracilis. FEBS Lett 150:89–93
Inui H, Miyatake K, Nakano Y, Kitaoka S (1983) Production and composition of wax esters by fermentation of Euglena gracilis. Agric Biol Chem 47:2669–2671
Inui H, Miyatake K, Nakano Y, Kitaoka S (1984) Fatty acid synthesis in mitochondria of Euglena gracilis. Eur J Biochem 142:121–126
Inui H, Miyatake K, Nakano Y, Kitaoka S (1985) The physiological role of oxygen-sensitive pyruvate dehydrogenase in mitochondrial fatty acid synthesis in Euglena gracilis. Arch Biochem Biophys 237:423–429
Inui H, Yamaji R, Saidoh H, Miyatake K, Kitaoka S (1991) Pyruvate:NADP oxidoreductase from Euglena gracilis: limited proteolysis of the enzyme with trypsin. Arch Biochem Biophys 286:270–276
Inui H, Miyatake K, Nakano Y, Kitaoka S (1992) Synthesis of reserved polysaccharide from wax esters accumulated as the result of anaerobic energy generation in Euglena gracilis returned from anaerobic to aerobic conditions. Int J Biochem 24:799–803
Inui H, Ishikawa T, Tamoi M (2017) Wax esters fermentation and its application for biofuel production. In: Schwartzbach S, Shingeoka S (eds) Euglena: biochemistry, cell and molecular biology. Springer, Cham, pp 269–283
Ip PF, Chen F (2005a) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 40:733–738. https://doi.org/10.1016/j.procbio.2004.01.039
Ip PF, Chen F (2005b) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496. https://doi.org/10.1016/J.PROCBIO.2005.02.014
Ishikawa E, Sansawa H, Abe H (2004) Isolation and characterization of a Chlorella mutant producing high amounts of chlorophyll and carotenoids. J Appl Phycol 16:385–393. https://doi.org/10.1023/B:JAPH.0000047949.31288.33
Isleen-Hosoglu M, Gultepe I, Elibol M (2012) Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of Nile red fluorescence based method for quantification of its neutral lipid content. Biochem Eng J 61:11–19
Ivušić F, Šantek B (2015) Optimization of complex medium composition for heterotrophic cultivation of Euglena gracilis and paramylon production. Bioprocess Biosyst Eng 38(6):1103–1112. https://doi.org/10.1007/s00449-015-1353-3
Jasso-Chávez R, Garcáa-Cano I, Marin-Hernández A, Mendoza-Cózatl D, Rendon JL, Moreno-Sánchez R (2005) The bacterial-like lactate shuttle components from heterotrophic Euglena gracilis. Biochim Biophys Acta 1709:181–190
Jia Z, Liu Y, Daroch M, Geng S, Cheng JJ (2014) Screening, growth medium optimisation and heterotrophic cultivation of microalgae for biodiesel production. Appl Biochem Biotechnol 173:1667–1679. https://doi.org/10.1007/s12010-014-0954-7
Jinkerson RE, Jonikas MC (2015) Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J 82(3):393–412
Kaiser S, Di Mascio P, Murphy ME (1990) Physical and chemical scavenging of singlet molecular oxygen by tocopherols. Arch Biochem Biophys 277:101–108
Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701
Khan AA, Kolattukudy PE (1973) Control of synthesis and distribution of acyl moieties in etiolated Euglena gracilis. Biochemistry 12:1939–1948
Kim MJ, Li YX, Dewapriya P, Ryu BM, Kim SK (2013) Floridoside suppresses pro-inflamatory reponses by blocking MAPK signaling in activated microglia. BMB Rep 46:398–403
Kobayashi M (2003) Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotechnol Bioprocess Eng 8:322. https://doi.org/10.1007/BF02949275
Kobayashi M, Kurimura Y, Tsuji Y (1997) Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol Lett 19:507–509. https://doi. org/10.1023/A:1018372900649
Kolattukudy PE (1970) Reduction of fatty acids to alcohols by cell-free preparations of Euglena gracilis. Biochemistry 9:1095–1102
Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63. https://doi.org/10.1016/J.ALGAL.2014.09.002
Krajčovič J, Vesteg M, Schwartzbach SD (2015) Euglenoid flagellates: a multi-faceted biotechnology platform. J Biotechnol 202:135–145
Kuddus M, Singh P, Thomas G, Al-Hazimi A (2013) Recent developments in production and biotechnological applications of C-phycocyanin. Biomed Res Int 2013:491–512
Kyle DJ, Gladue R (1993) Eicosapentaenoic acids and methods for their production. US Patent 5,244,921
Kyle DJ, Boswell KDB, Gladue RM, Reeb SE (1992) Designer oils from microalgae as nutritional supplements. In: Bills DD, Kung S-D (eds) Biotechnology and nutrition. Newnes, Boston, pp 451–468. https://doi.org/10.1016/B978-0-7506-9259-5.50029-7
Lauersen KJ, Willamme R, Coosemans N, Joris M, Kruse O, Remacle C (2016) Peroxisomal microbodies are at the crossroads of acetate assimilation in the green microalga Chlamydomonas reinhardtii. Algal Res 16:266–274
Lee YK (2004) Heterotrophic carbon nutrition. In: Richmond A (ed) Handbook of microalgal culture. Blackwell, Oxford, pp 116–124
Li SY, Lellouche JP, Shabtai Y, Arad S (2001) Fixed carbon partitioning in the red microalga Porphyridium sp. (Rhodophyta). J Phycol 37:289–297
Li SY, Shabtai Y, Arad S (2002) Floridoside as a carbon precursor for the synthesis of cell wall polysaccharide in the red microalga Porphyridium sp. (Rhodophyta). J Phycol 38:931–938
Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771. https://doi.org/10.1002/bit.21489
Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049. https://doi.org/10.1007/s10529-009-9975-7
Lim KC, Yusoff FM, Shariff M, Kamarudin MS (2018) Astaxanthin as feed supplement in aquatic animals. Rev Aquac 10:738–773. https://doi.org/10.1111/raq.12200
Lin JH, Lee DJ, Chang JS (2015) Lutein production from biomass: marigold flowers versus microalgae. Bioresour Technol 184:421–428. https://doi.org/10.1016/j.biortech.2014.09.099
Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110. https://doi.org/10.1016/j.biortech.2010.06.017
Liu J, Huang J, Jiang Y, Chen F (2012) Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technol 107:393–398. https://doi.org/10. 1016/J.BIORTECH.2011.12.047
Liu J, Sun Z, Zhong Y, Gerken H, Huang J, Chen F (2013) Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J Appl Phycol 25:1447–1456. https://doi.org/10.1007/s10811-013-9974-x
Liu J, Sun Z, Gerken H, Liu Z, Jiang Y, Chen F (2014a) Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: biology and industrial potential. Mar Drugs 12:3487–3515. https://doi.org/10.3390/md12063487
Liu J, Sun Z, Chen F (2014b) Chapter 6-heterotrophic production of algal oils. In: Pandey A, Lee D-J, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, Amsterdam, pp 111–142. https://doi.org/10.1016/B978-0-444-59558-4.00006-1
Lowrey J, Brooks MS, McGinn PJ (2015) Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review. J Appl Phycol 27:1485–1498. https://doi.org/10.1007/s10811-014-0459-3
Ma RYN, Chen F (2001) Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochem 36:1175–1179. https://doi. org/10.1016/S0032-9592(01)00157-1
Marchessault RH, Deslandes Y (1979) Fine structure of (1→3)-β-d-glucans: curdlan and paramylon. Carbohydr Res 75:231–242
Marechal LR, Goldemberg SH (1964) Uridine diphosphate glucose-beta-1,3-glucan beta-3-glucosyltransferase from Euglena gracilis. J Biol Chem 239:3163–3167
Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542. https://doi.org/10.1016/J.BIOTECHADV.2013.07.011
Marquez FJ, Sasaki KS, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng 76:408–410
Martinez-Garcia M, van der Maarel MJEC (2016) Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress. AMB Expr 6 (1):1–7. https://doi.org/10.1186/s13568-016-0244-6
Martinez-Garcia M, Stuart MCA, van der Maarel MJEC (2016) Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens. Int J Biol Macromol 89:12–18. https://doi.org/10.1016/j.ijbiomac. 2016.04.051
Martinez-Garcia M, Kormpa A, van der Maarel MJEC (2017) The glycogen of Galdieria sulphuraria as alternative to starch for the production of slowly digestible and resistant glucose polymers. Carbohydr Polym 169:75–82. https://doi.org/10.1016/j.carbpol.2017.04.004
Mashhadinejad A, Zamani H, Sarmad J (2016) Effect of growth conditions and extraction solvents on enhancement of antimicrobial activity of the microalgae Chlorella vulgaris. Pharm Biomed Res 2(4):65–73
Massoz M, Cardol P, Gonzalez-Halphen D, Remacle C (2017) Mitochondrial bioenergetics pathways in Chlamydomonas. In: Hippler M (ed) Chlamydomonas: molecular genetics and physiology, microbiology monographs. Springer, Cham
Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232. https://doi.org/10.1016/j.rser.2009.07. 020
Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14(11):2659–2679
McCay PB, King MM (1980) Vitamin E: its role as biologic free radical scavenger and its relationship to the microsomal mixed-function oxidase system. In: Machin LJ (ed) Vitamin E: a comprehensive treatise. Marcel Dekker, New York, pp 289–318
McFadden GI (2014) Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harb Perspect Biol 6:a016105
Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–252. https://doi.org/10.1126/science.1143609
Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846. https://doi.org/10.1016/j.biortech.2005.04.008
Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2016) A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7:546
Moon M, Mishra SK, Kim CW, Suh WI, Min SP, Yang JW (2014) Isolation and characterization of thermostable phycocyanin from Galdieria sulphuraria. Korean J Chem Eng 31:490–495
Morales-Sánchez D, Tinoco-Valencia R, Kyndt J, Martinez A (2013) Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnol Biofuels 6:100. https://doi.org/10.1186/1754-6834-6-100
Morales-Sánchez D, Tinoco-Valencia R, Caro-Bermúdez MA, Martinez A (2014) Culturing Neochloris oleoabundans microalga in a nitrogen-limited, heterotrophic fed-batch system to enhance lipid and carbohydrate accumulation. Algal Res 5:61–69. https://doi.org/10.1016/j. algal.2014.05.006
Moreno-Sánchez R, Jasso-Chávez R (2003) Cytosol – mitochondria transfer of reducing equivalents by a lactate shuttle in heterotrophic Euglena. Eur J Biochem 270(24):4942–4951. https://doi.org/10.1046/j.1432-1033.2003.03896.x
Müller M, Mentel M, Van Hellemond JJ et al (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76(2):444–495. https://doi.org/10. 1128/MMBR.05024-11
Nakazawa M (2017) C2 metabolism in Euglena. In: Schwartzbach S, Shingeoka S (eds) Euglena: biochemistry, cell and molecular biology. Springer, Cham, pp 39–45
Nakazawa M, Inui H, Yamaji R, Yamamoto T, Takenaka S, Ueda M, Nakano Y, Miyatake K (2000) The origin of pyruvate:NADP+ oxidoreductase in mitochondria of Euglena gracilis. FEBS Lett 479:155–156
Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477
O’Grady J, Morgan JA (2011) Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess Biosyst Eng 34:121–125. https://doi.org/10.1007/s00449-010-0474-y
Oesterhelt C, Gross W (2002) Different sugar kinases are involved in the sugar sensing of Galdieria sulphuraria. Plant Physiol 128(1):291–299. https://doi.org/10.1104/pp.010553
Oesterhelt C, Schnarrenberger C, Gross W (1999) Characterization of a sugar/polyol uptake system in the red alga Galdieria sulphuraria. Eur J Phycol 34:271–277
Ogawa T, Kimura A, Sakuyama H, Tamoi M, Ishikawa T, Shigeoka S (2015) Identification and characterization of cytosolic fructose-1,6-bisphosphatase in Euglena gracilis. Biosci Biotechnol Biochem 79:1957–1964
Ogbonna JC, Tomiyama S, Tanaka H (1998) Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J Appl Phycol 10:67–74
Ogbonna JC, Tomiyama S, Tanaka H (1999) Production of α-tocopherol by sequential heterotrophic–photoautotrophic cultivation of Euglena gracilis. J Biotechnol 70:213–221
Ogbonna JC, Ichige E, Tanaka H (2002) Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Appl Microbiol Biotechnol 58:532–538
Orosa M, Valero JF, Herrero C, Abalde J (2001) Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnol Lett 23:1079–1085. https://doi.org/10.1023/A:1010510508384
Pahl SL, Lewis DM, Chen F, King KD (2010) Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): effect of some environmental factors. J Biosci Bioeng 109:235–239. https://doi.org/10.1016/j.jbiosc.2009.08.480
Pahl SL, Lewis DM, King KD, Chen F (2012) Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): effect of nitrogen source and concentration. J Appl Phycol 24:301–307. https://doi.org/10.1007/s10811-011-9680-5
Perez-Garcia O, Escalante FM, de-Bashan LE, Bashan Y (2011) Heterotrophic culture of microalgae: metabolism and potential products. Water Res 45(1):11–36
Piccaglia R, Marotti M, Grandi S (1998) Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Ind Crop Prod 8:45–51. https://doi.org/10.1016/S0926-6690(97)10005-X
Pinto G, Albertano P, Ciniglia C, Cozzolino S, Pollio A, Yoon HS, Bhattacharya D (2003) Comparative approaches to the taxonomy of the genus Galdieria Merola (Cyanidiales, Rhodophyta). Cryptogamie Algol 24:13–32
Plancke C, Vigeolas H, Höhner R et al (2014) Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth. Plant J 77(3):404–417
Pratt R, Daniels TC, Eiler JJ et al (1944) Chlorellin, an antibacterial substance from Chlorella. Science 99(2574):351–352
Raboy B, Padan E, Shilo M (1976) Heterotrophic capacities of Plectonema boryanum. Arch Microbiol 110:77–85
Rajesh K, Rohit MV, Venkata Mohan S (2017) Microalgae-based carotenoids production. Algal Green Chem. pp 139–147. https://doi.org/10.1016/B978-0-444-63784-0.00007-2
Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815. https://doi.org/10.1016/j.biochi.2004.09.017
Rhie G, Beale SI (1994) Regulation of heme oxygenase activity in Cyanidium caldarium by light, glucose, and phycobilin precursors. J Biol Chem 269:9620–9626
Rigano C, Fuggi A, Rigano VDM, Aliotta G (1976) Studies on utilization of 2-ketoglutarate, glutamate and other amino acids by the unicellular alga Cyanidium caldarium. Arch Microbiol 107:133–138
Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5
Rochaix JD (2002) Chlamydomonas, a model system for studying the assembly and dynamics of photosynthetic complexes. FEBS Lett 529:34–38
Rodríguez-Zavala JS, Ortiz-Cruz MA, Moreno-Sánchez R (2006) Characterization of an aldehyde dehydrogenase from Euglena gracilis. J Eukaryot Microbiol 53:36–42
Rodríguez-Zavala JS, Ortiz-Cruz MA, Mendoza-Hernández G, Moreno-Sánchez R (2010) Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 109:2160–2171
Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101
Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W (2001) Pyruvate:NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol 18:710–720
Ryu BM, Li YX, Kang KH, Kim SK, Kim DG (2015) Floridoside from Laurencia undulata promotes osteogenic differentiation in murine bone marrow mesenchymal cells. J Funct Foods 19:505–511
Sajjadi B, Chen W-Y, Raman AAA, Ibrahim S (2018) Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew Sust Energ Rev 97:200–232. https://doi.org/10.1016/j.rser.2018.07. 050
Sakarika M, Kornaros M (2017) Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: effect of different nutrient limitation strategies. Bioresour Technol 243:356–365
Salinas T, Larosa V, Cardol P, Maréchal-Drouard L, Remacle C (2014) Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review. Biochimie 100:207–218
Šantek B, Felski M, Friehs K, Lotz M, Flaschel E (2009) Production of paramylon, a β-1,3-glucan, by heterotrophic cultivation of Euglena gracilis on a synthetic medium. Eng Life Sci 9:23–28
Šantek B, Felski M, Friehs K, Lotz M, Flaschel E (2010) Production of paramylon, a β-1,3-glucan, by heterotrophic cultivation of Euglena gracilis on potato liquor. Eng Life Sci 10:165–170
Šantek B, Friehs K, Lotz M, Flaschel E (2012) Production of paramylon, a β-1,3-glucan, by heterotrophic growth of Euglena gracilis on potato liquor in fed-batch and repeated-batch mode of cultivation. Eng Life Sci 12:89–94
Sarada R, Tripathi U, Ravishankar G (2002) Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem 37:623–627. https://doi.org/10.1016/S0032-9592(01)00246-1
Schmidt RA, Wiebe MG, Eriksen NT (2005) Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria. Biotechnol Bioeng 90:77–84
Schneegurt MA, Sherman DM, Sherman LA (1997) Growth, physiology and ultrastructure of a diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142 in mixotrophic and chemoheterotrophic cultures. J Phycol 33:632–642
Schneider T, Betz A (1985) Wax ester fermentation in Euglena gracilis T. Factors favouring the synthesis of odd-numbered fatty acids and alcohols. Planta 166:67–73
Schönknecht G, Chen WH, Ternes CM et al (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1209
Seckbach J (1999) The Cyanidiophyceae: hot spring acidophilic algae. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Springer, Netherlands, pp 425–435
Shen Y, Yuan W, Pei Z, Mao E (2010) Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160:1674–1684. https://doi. org/10.1007/s12010-009-8659-z
Shen XF, Liu JJ, Chu FF, Lam PKS, Zeng RJ (2015) Enhancement of FAME productivity of Scenedesmus obliquus by combining nitrogen deficiency with sufficient phosphorus supply in heterotrophic cultivation. Appl Energy 158:348–354. https://doi.org/10.1016/j.apenergy.2015. 08.057
Shene C, Asenjo JA, Chisti Y (2017) Metabolic modelling and simulation of the light and dark metabolism of Chlamydomonas reinhardtii. Plant J 96(5):1076–1088. https://doi.org/10.1111/tpj.14078
Shi XM, Chen F (1999) Production and rapid extraction of lutein and the other lipid-soluble pigments from Chlorella protothecoides grown under heterotrophic and mixotrophic conditions. Mol Nutr Food Res 43(2):109–113. https://doi.org/10.1002/(SICI)1521-3803(19990301) 43:2<109::AID-FOOD109>3.0.CO;2-K
Shi XM, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727
Shi XM, Chen F, Yuan JP, Chen H (1997) Heterotrophic production of lutein by selected Chlorella strains. J Appl Phycol 9:445–450. https://doi.org/10.1023/A:1007938215655
Shi X-M, Liu H-J, Zhang X-W, Chen F (1999) Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem 34:341–347. https://doi.org/10.1016/S0032-9592(98)00101-0
Shi XM, Zhang XW, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzym Microb Technol 27:312–318. https://doi. org/10.1016/S0141-0229(00)00208-8
Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727
Shi X, Wu Z, Chen F (2006) Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Mol Nutr Food Res 50:763–768. https://doi.org/10.1002/mnfr. 200600037
Shigeoka S, Onishi T, Nakano Y, Kitaoka S (1986) The contents and subcellular distribution of tocopherols in Euglena gracilis. Agric Biol Chem 50:1063–1065
Sijtsma L, Anderson AJ, Ratledge C (2010) Alternative carbon sources for heterotrophic production of Docosahexaenoic acid by the marine alga Crypthecodinium cohnii. In: Cohen Z, Ratledge C (eds) Single cell oils, 2nd edn. AOCS, Champaign, pp 131–149. https://doi.org/10.1016/B978-1-893997-73-8.50011-6
Sloth JK, Wiebe MG, Eriksen NT (2006) Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzym Microb Technol 38(1–2):168–175. https://doi.org/10.1016/j.enzmictec.2005.05.010
Sloth JK, Jensen HC, Pleissner D, Eriksen NT (2017) Growth and phycocyanin synthesis in the heterotrophic microalga Galdieria sulphuraria on substrates made of food waste from restaurants and bakeries. Bioresour Technol 238:296–305. https://doi.org/10.1016/j.biortech. 2017.04.043
Smith RT, Bangert K, Wilkinson SJ, Gilmour DJ (2015) Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractinium inermum. Biomass Bioenergy 82:73–86
Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. https://doi.org/10.1263/JBB.101.87
Stadnichuk IN, Rakhimberdieva MG, Bolychevtseva YV, Yurina NP, Karapetyan NV, Selyakh IO (1998) Inhibition by glucose of chlorophyll a and phycocyanobilin biosynthesis in the unicellular red alga Galdieria partita at the stage of coproporphyrinogen III formation. Plant Sci 136:11–23
Stadnichuk IN, Rakhimberdieva MG, Boichenko VA, Karapetyan NV, Selyakh IO, Bolychevtseva YV (2000) Glucose-induced inhibition of the photosynthetic pigment apparatus in heterotrophically-grown Galdieria partita. Russ J Plant Physiol 47:585–592
Stebegg R, Schmetterer G, Rompel A (2019) Transport of organic substances through the cyto-plasmic membrane of cyanobacteria. Phytochemistry 157:206–218
Sun N, Wang Y, Li YT, Huang JC, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292. https://doi.org/10.1016/J.PROCBIO.2008.07.014
Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68:954–979
Tan CK, Johns MR (1991) Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiologia 215:13–19. https://doi.org/10.1007/BF00005896
Tan CK, Johns MR (1996) Screening of diatoms for heterotrophic eicosapentaenoic acid production. J Appl Phycol 8:59–64. https://doi.org/10.1007/BF02186223
Tanaka Y, Ogawa T, Maruta T, Yoshida Y, Arakawa K, Ishikawa T (2017) Glucan synthase-like 2 is indispensable for paramylon synthesis in Euglena gracilis. FEBS Lett 591(10):1360–1370. https://doi.org/10.1002/1873-3468.12659
Tani Y, Tsumura H (1989) Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agric Biol Chem 53:305–312
Tatsuzawa H, Takizawa E (1995) Changes in lipid and fatty acid composition of Pavlova lutheri. Phytochemistry 40:397–400. https://doi.org/10.1016/0031-9422(95)00327-4
Teerawanichpan P, Qiu X (2010) Fatty acyl-CoA reductase and wax synthase from Euglena gracilis in the biosynthesis of medium-chain wax esters. Lipids 45:263–273
Terashima M, Specht M, Naumann B, Hippler M (2010) Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 9(7):1514–1532
Theriault RJ (1965) Heterotrophic growth and production of xanthophylls by Chlorella pyrenoidosa. Appl Microbiol 13:402–416
Tomita Y, Yoshioka K, Iijima H et al (2016) Succinate and lactate production from Euglena gracilis during dark, anaerobic conditions. Front Microbiol 7:2050
Tomiyama T, Kurihara K, Ogawa T et al (2017) Wax ester synthase/diacylglycerol acyltransferase isoenzymes play a pivotal role in wax ester biosynthesis in Euglena gracilis. Sci Rep 7(1):1–13. https://doi.org/10.1038/s41598-017-14077-6
Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162
Tredici MR, Margheri MC, Giovannetti L, De Philippos R, Vincenzini M (1988) Heterotrophic metabolism and diazotrophic growth of Nostoc sp. from Cycas circinalis. Plant Soil 110:199–206
Tucci S, Vacula R, Krajčovič J, Proksch P, Martin W (2010) Variability of wax-ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. J Eukaryot Microbiol 57:63–69
Turmel M, Gagnon MC, O’Kelly CJ, Otis C, Lemieux C (2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26:631–648
Vahrenholz C, Riemen G, Pratje E, Dujon B, Michaelis G (1993) Mitochondrial DNA of Chlamydomonas reinhardtii: the structure of the ends of the linear 15.8-kb genome suggests mechanisms for DNA replication. Curr Genet 24(3):241–247
Villarejo A, Orus MI, Martinez F (1995) Coordination of photosynthetic and respiratory metabolism in Chlorella vulgaris UAM 101 in the light. Physiol Plant 94:680–686
Wan M-X, Wang R-M, Xia J-L, Rosenberg JN, Nie Z-Y, Kobayashi N, Oyler GA, Betenbaugh MJ (2012) Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol Bioeng 109:1958–1964. https://doi.org/10.1002/bit.24477
Wan M, Wang Z, Zhang Z, Wang J, Li S, Yu A, Li Y (2016) A novel paradigm for the high-efficient production of phycocyanin from Galdieria sulphuraria. Bioresour Technol 218:272–278. https://doi.org/10.1016/j.biortech.2016.06.045
Wang C, Lang CQ (2008) Effects of shear stress on microalgae – a review. Biotechnol Advances 36:986–1002
Wang H, Fewer DP, Holm L, Rouhiainen L, Sivonen K (2014) Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc Natl Acad Sci U S A 111:9259–9264
Wang T, Tian X, Liu T, Wang Z, Guan W, Guo M, Chu J, Zhuang Y (2017) A two-stage fed-batch heterotrophic culture of Chlorella protothecoides that combined nitrogen depletion with hyperosmotic stress strategy enhanced lipid yield and productivity. Process Biochem 60:74–83. https://doi.org/10.1016/j.procbio.2017.05.027
Wang Y, Seppänen-Laakso T, Rischer H, Wiebe MG (2018) Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLoS One 13(4): e0195329. https://doi.org/10.1371/journal.pone.0195329
Weber A, Oesterhelt C, Gross W et al (2004) EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid a biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Mol Biol 55:17–32
Wei D, Chen F, Chen G, Zhang X, Liu L, Zhang H (2008) Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci China Ser C Life Sci 51:1088–1093. https://doi.org/10.1007/s11427-008-0145-2
Wen Z-Y, Chen F (2000) Production potential of eicosapentaenoic acid by the diatom Nitzschia laevis. Biotechnol Lett 22:727–733. https://doi.org/10.1023/A:1005666219163
Wen Z-Y, Chen F (2001) Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzym Microb Technol 29:341–347. https://doi.org/10.1016/S0141-0229(01)00385-4
Wen ZY, Chen F (2003) Heterotrophic production of eicosapentoic acid by microalgae. Biotechnol Adv 21:273–294
Wilhelm C, Büchel C, Fisahn J, Goss R, Jakob T, LaRoche J, Lavaud J, Lohr M, Riebesell U, Stehfest K, Valentin K, Kroth PG (2006) The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist 157:91–124. https://doi.org/10.1016/j.protis.2006.02.003
Wood BJB, Grimson PHK, German JB, Turner M (1999) Photoheterotrophy in the production of phytoplankton organisms. J Biotechnol 70:175–183. https://doi.org/10.1016/S0168-1656(99) 00070-X
Wu Z, Wu S, Shi X (2007) Supercritical fluid extraction and determination of lutein in heterotrophically cultivated Chlorella pyrenoidosa. J Food Process Eng 30:174–185. https://doi.org/10. 1111/j.1745-4530.2007.00102.x
Xie T, Sun Y, Du K, Liang B, Cheng R, Zhang Y (2012) Optimization of heterotrophic cultivation of Chlorella sp. for oil production. Bioresour Technol 118:235–242. https://doi.org/10.1016/j. biortech.2012.05.004
Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36. https://doi.org/10.1007/s00253-007-1285-1
Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507. https://doi. org/10.1016/j.jbiotec.2006.05.002
Yamada K, Suzuki H, Takeuchi T et al (2016) Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting. Sci Rep 6:26327
Yang W, Catalanotti C, D’Adamo S et al (2014) Alternative acetate production pathways in Chlamydomonas reinhardtii during dark anoxia and the dominant role of chloroplasts in fermentative acetate production. Plant Cell 26(11):4499–4518
Yang W, Catalanotti C, Wittkopp TM, Posewitz MC, Grossman AR (2015) Algae after dark: mechanisms to cope with anoxic/hypoxic conditions. Plant J 82(3):481–503
Yanowitz J, Ratcliff MA, McCormick RL, Taylor JD, Murphy MJ (2014) Compendium of experimental cetane numbers. Technical report. National Renewable Energy Laboratory, Golden, CO
Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci U S A 99:15507–15512
Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818
Yoon HS, Muller KM, Sheath RG, Ott FD, Bhattacharya D (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482–492
Zhang DH, Lee YK (2001) Two-step process for ketocarotenoid production by a green alga, Chlorococcum sp. strain MA-1. Appl Microbiol Biotechnol 55:537–540. https://doi.org/10. 1007/s002530000526