Login
EN
[EN] English
[FR] Français
Login
EN
[EN] English
[FR] Français
Give us feedback
Explore
Search
Special collections
Statistics
News
Help
Start on ORBi
Deposit
Profile
Publication List
Add your ORCID
Tutorials
Legal Information
Training sessions
About
What's ORBi ?
Impact and visibility
Around ORBi
About statistics
About metrics
OAI-PMH
ORBi team
Release Notes
Back
Home
Detailled Reference
No full text
Speech/Talk (Diverse speeches and writings)
Towards an accurate cancer diagnosis modelization: Comparison of Random Forest strategies
Debit, Ahmed
;
Poulet, Christophe
2018
Permalink
https://hdl.handle.net/2268/232014
Files (0)
Send to
Details
Statistics
Bibliography
Similar publications
Files
Full Text
No document available.
Send to
RIS
BibTex
APA
Chicago
Permalink
X
Linkedin
copy to clipboard
copied
Details
Keywords :
Random Forest Classification methods; Cancer; Diagnosis
Research Center/Unit :
GIGA‐R - Giga‐Research - ULiège
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Debit, Ahmed
;
Université de Liège - ULiège > Cancer-Human Genetics
Poulet, Christophe
;
Université de Liège - ULiège > Cancer-Human Genetics
Language :
English
Title :
Towards an accurate cancer diagnosis modelization: Comparison of Random Forest strategies
Publication date :
30 November 2018
Number of pages :
60
Event name :
GIGA-Cancer Seminars
Event organizer :
GIGA-Cancer
Event place :
Liege, Belgium
Event date :
30-11-2018
Name of the research project :
wallInov NACATS
Funders :
Région wallonne: R.RWAL.1218-J-P-A
Available on ORBi :
since 21 January 2019
Statistics
Number of views
55 (9 by ULiège)
Number of downloads
8 (2 by ULiège)
More statistics
Bibliography
Similar publications
Contact ORBi