[en] We previously demonstrated that IL-1beta-mediated induction of the nuclear factor-kappaB (NF-kappaB) transcription factor proceeds through the production of reactive oxygen intermediates in lymphoid cells, while it occurs independently of any oxidative stress in epithelial transformed cells. Indeed, inhibition of receptor internalization as well as NH4Cl and chloroquine blocked IL-1beta-mediated induction of NF-kappaB in OVCAR-3 and in other epithelial cell lines but not in lymphoid cells, indicating that distinct pathways are involved. Conversely, while we observed phospholipase A2 activity in both cell types following IL-1beta stimulation, specific inhibitors of this enzyme inhibited NF-kappaB induction only in lymphoid cells. Moreover, expression of the 5-lipoxygenase (5-LOX) enzyme was not detected in epithelial cells, and inhibition of this enzyme blocked NF-kappaB induction by IL-1beta only in lymphoid cells. This study thus indicates that the activation of NF-kappaB following IL-1beta treatment involves the activation of phospholipase A2 and 5-LOX and the production of reactive oxygen intermediates (ROIs) in lymphoid cells, while in epithelial cells, another pathway predominates and could involve the acid sphingomyelinase. Moreover, arachidonic acid could induce NF-kappaB in epithelial and lymphoid cells, but this activation involved the 5-LOX enzyme and the production of ROIs only in lymphoid cells. The inefficiency of the ROI pathway in epithelial cells is probably the consequence of both low ROI production due to undetectable expression of 5-LOX and rapid degradation of hydrogen peroxide due to high catalase activity.
Disciplines :
Oncology
Author, co-author :
Bonizzi, Giuseppina
Piette, Jacques ; Université de Liège - ULiège > Département des sciences de la vie > Virologie - Immunologie
Merville, Marie-Paule ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Bours, Vincent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Génétique générale et humaine
Language :
English
Title :
Distinct Signal Transduction Pathways Mediate Nuclear Factor-Kappab Induction by Il-1beta in Epithelial and Lymphoid Cells
Publication date :
01 December 1997
Journal title :
Journal of Immunology
ISSN :
0022-1767
eISSN :
1550-6606
Publisher :
American Association of Immunologists, United States - Maryland
Siebenlist, U., G. Franzoso, and K. Brown. 1994. Structure, regulation, and function of NF-κB. Annu. Rev. Biol. 10:405.
Miyamoto, S., and I. M. Verma. 1995. Rel/NF-κB/IκB story. Adv. Cancer Res. 66:255.
Baldwin, A. S. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649.
Beg, A. A., and A. S. Baldwin. 1993. The IκB proteins: multifunctional regulators of Rel/NF-κB transcription factors. Genes Dev. 7:2064.
Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and U. Siebenlist. 1995. Control of IκB-α proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485.
Traenckner, E. B.-M., H. L. Pahl, T. Henkel, K. N. Schmidt, S. Wilk, and P. A. Baeuerle. 1995. Phosphorylation of IκB-α on serines 32 and 36 controls IκB-a proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14:2876.
Beg, A. A., T. S. Finco, P. V. Nantermet, and A. S. J. Baldwin. 1993. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκBα: a mechanism for NF-κB activation. Mol. Cell. Biol. 13:3301.
Brown, K., S. Park, T. Kanno, G. Franzoso, and U. Siebenlist. 1993. Mutual regulation of the transcriptional activator NF-κB and its inhibitor, IκB-α. Proc. Natl. Acad. Sci. USA 90:2532.
Imbert, V., R. A. Rupec, A. Livolsi, H. L. Pahl, E. B.-M. Traenckner, C. Mueller-Dieckmann, D. Farahifar, B. Rossi, P. Auberger, P. A. Baeuerle, and J.-F. Peyron. 1996. Tyrosine phosphorylation of IκB-α activates NF-κB without proteolytic degradation of IκB-α. Cell 86:787.
Ballou, L. R., C. P. Chao, M. A. Holness, S. C. Barker, and R. Ragshow. 1992. Interleukin-1 -mediated PGE2 production and sphingomyelin metabolism. J. Biol. Chem. 267:20044.
Mathias, S., A. Younes, C.-C. Kan, I. Orlow, C. Joseph, and R. N. Kolesnick. 1993. Activation of sphingomyelin signal pathway in intact EL4 cells and in a cell-free system by IL-1β. Science 259:519.
Heller, R. A., and M. Krönke. 1994. Tumor necrosis factor-mediated signaling pathways. J. Cell Biol. 126:5.
Kolesnick, R., and D. W. Golde. 1994. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77:325.
Adam-Klages, S., D. Adam, K. Wiegmann, S. Struve, W. Kolanus, J. Schneider-Mergener, and M. Krönke. 1996. FAN, a novel WD-repeat protein couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 86:937.
Wiegmann, K., S. Schütze, T. Machleidt, D. Witte, and M. Krönke. 1994. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78:1005.
Müller, G., M. Ayoub, P. Storz, J. Rennecke, D. Fabbro, and K. Pfizenmaier. 1995. PKC ζ is a molecular switch in signal transduction of TNF-α, bifunctionally regulated by ceramide and arachidonic acid. EMBO J. 14:1961.
Machleidt, T., K. Wiegmann, T. Henkel, S. Schütze, P. Baeuerle, and M. Krönke. 1994. Sphingomyelinase activates proteolytic IκB-α degradation in a cell-free system. J. Biol. Chem. 269:13760.
Rivas, C. I., D. W. Golde, J. C. Vera, and R. N. Kolesnick. 1994. Involvement of the sphingomyelin pathway in autocrine tumor necrosis factor signaling for human immunodeficiency virus production in chronically infected HL-60 cells. Blood 8:2191.
Mathias, S., K. A. Dressler, and R. N. Kolesnick. 1991. Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor α. Proc. Natl. Acad. Sci. USA 88:10009.
Finco, T. S., and A. S. J. Baldwin. 1993. κB site-dependent induction of gene expression by diverse inducers of nuclear factor κB requires Raf-1. J. Biol. Chem. 268:17676.
Raines, M. A., R. N. Kolesnick, and D. W. Golde. 1993. Sphingomyelinase and ceramide activate mitogen-activated protein kinase in myeloid HL-60 cells. J. Biol. Chem. 268:14572.
Victor, I., P. Schwenger, W. Li, J. Schlessinger, and J. Vilcek. 1993. Tumor necrosis factor-induced activation and increased tyrosine phosphorylation of mitogen-activated protein (MAP) kinase in human fibroblast. J. Biol. Chem. 268: 18994.
Liu, J., S. Mathias, Z. Yang, and R. N. Kolesnick. 1994. Renaturation and tumor necrosis factor-α stimulation of a 97-kDa ceramide-activated protein kinase. J. Biol. Chem. 269:3047.
Belka, C., K. Wiegmann, D. Adam, R. Holland, M. Neuloh, F. Herrmann, M. Krönke, and M. A. Brach. 1995. Tumor necrosis factor (TNF)-α activates c-raf-1 kinase via the p55 TNF receptor engaging neutral sphingomyelinase. EMBO J. 14:1156.
Huwiler, A., J. Brunner, R. Hummel, M. Vervoordeldonk, S. Stabel, H. van den Bosch, and J. Pfeilschifter. 1996. Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc. Natl. Acad. Sci. USA 93:6959.
Lin, L.-L., M. Wartmann, A. Y. Lin, J. L. Knopf, A. Seth, and R. J. Davis. 1993. cPLA2 is phosphorylated and activated by MAP kinase. Cell 72:269.
Los, M., H. Schenk, K. Hexel, P. A. Baeuerle, W. Dröge, and K. Schulze-Osthoff. 1995. IL-2 gene expression and NF-κB activation through CD28 requires reactive oxygen production by 5-lipoxygenase. EMBO J. 14:3731.
Lozano, J., E. Berra, M. M. Municio, M. T. Diaz-Meco, I. Dominguez, L. Sanz, and J. Moscat. 1994. Protein kinase C ζ isoform is critical for κB-dependent promoter activation by sphingomyelinase. J. Biol. Chem. 269:19200.
Dbaibo, G. S., L. M. Obeid, and Y. A. Hannun. 1993. Tumor necrosis factor-α (TNF-α) signal transduction through ceramide. J. Biol. Chem. 268:17762.
Betts, J. C., A. B. Agranoff, G. J. Nabel, and J. A. Shayman. 1994. Dissociation of endogenous cellular ceramide from NF-κB activation. J. Biol. Chem. 269: 8455.
Johns, L. D., T. Sarr, and G. E. Ranges. 1994. Inhibition of ceramide pathway does not affect ability of TNF-α to activate nuclear factor-κB. J. Immunol. 152: 5877.
Schreck, R., P. Rieber, and P. A. Baeuerie. 1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 10:2247.
Schreck, R., K. Albermann, and P. A. Baeuerle. 1992. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radical Res. Commun. 17:221.
Schreck, R., B. Meier, D. N. Mannel, W. Droge, and P. A. Baeuerle. 1992. Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J. Exp. Med. 175:1181.
Bonizzi, G., E. Dejardin, B. Piret, J. Piette, M-P. Merville, and V. Bours. 1996. IL-1β induces NF-κB in epithelial cells independently of the production of reactive oxygen intermediates. Eur. J. Biochem. 242:544.
Dejardin, E., G. Bonizzi, A. Bellahcène, V. Castronovo, M.-P. Merville, and V. Bours. 1995. Highly expressed p100/p52 (NFKB2) sequesters other NF-κB-related proteins in the cytoplasm of human breast cancer cells. Oncogene 11: 1835.
Franzoso, G., V. Bours, S. Park, M. Tomita-Yamaguchi, K. Kelly, and U. Siebenlist. 1992. The candidate oncoprotein Bcl-3 is an antagonist of p50/NF-κB-mediated inhibition. Nature 359:339.
Jaffrézou, J.-P., T. Levade, A. Bettaïeb, N. Andrieu, C. Bezombes, N. Maestre, S. Vermeersch, A. Rousse, and G. Laurent. 1996. Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis. EMBO J. 15:2417.
Levade, T., M.-C. Tempesta, and R. Salvayre. 1993. The in situ degradation of ceramide, a potential lipid mediator, is not completely impaired in Farber disease. FEBS Lett. 329:306.
Godfrey, R. W., W. J. Johnson, and S. T. Hoffstein. 1987. Recombinant tumor necrosis factor and interleukin-1 both stimulate human synovial cell arachidonic acid release and phospholipid metabolism. Biochim. Biophys. Res. Commun. 142: 235.
Feltenmark, S., G. Runarsson, P. Larsson, P.-J. Jakobsson, M. Björkholm, and H.-E. Claesson. 1995. Diverse expression of cytosolic phospholipase A2, 5-lipoxygenase and prostaglandin H synthase 2 in acute pre-B-lymphocytic leukemia cells. Br. J. Haematol. 90:585.
Sandstrom, P. A., B. Roberts, T. M. Folks, and T. M. Buttke. 1993. HIV gene expression enhances T cell susceptibility to hydrogen peroxide-induced apoptosis. AIDS Res. Hum. Retroviruses 9:1107.
Andrieu, N., R. Salvayre, J.-P. Jaffrézou, and T. Levade. 1995. Low temperatures and hypertonicity do not block cytokine-induced stimulation of the sphingomyelin pathway but inhibit nuclear factor-κB activation. J. Biol. Chem. 270:24518.
Lee, S., K. A. Felts, G. C. N. Parry, L. M. Armacost, and R. R. Cobb. 1997. Inhibition of 5-lipoxygenase blocks IL-1β-induced vascular adhesion molecule-1 gene expression in human endothelial cells. J. Immunol. 158:3401.
Gillard, J. W., A. W. Ford-Hutchinson, C. Chan, S. Charleson, D. Denis, A. Foster, R. Fortin, S. Leger, C. S. McFarlane, H. Morton, H. Piechuta, D. Riendeau, C. A. Rouzer, J. Rokach, R. Young, D. E. MacIntyre, L. Peterson, T. Bach, G. Eiermann, S. Hopple, J. Humes, L. Hupe, S. Luell, J. Metzger, R. Meurer, D. K. Miller, E. Opas, and S. Pacholok. 1989. L-663,536 (MK-886) (3-(1-(4-chlorobenzyl)-3-t-butyl-thio-isopropylindol-2-yl)-2,2-dimethylpropanoic acid), a novel, active leukotriene biosynthesis inhibitor. Can. J. Physiol. Pharmacol. 67:456.
Rouzer, C. A., A. W. Ford-Hutchinson, H. E. Morton, and J. W. Gillard. 1990. MK886, a potent and specific leukotriene biosynthesis inhibitor blocks and reverses the membrane association of 5-lipoxygenase in ionophore-challenged leukocytes. J. Biol. Chem. 265:1436.
Lewis, R. A., K. F. Austen, and R. J. Soberman. 1990. Leukotrienes and other products of the 5-lipoxygenase pathway. N. Engl. J. Med. 323:645.
Harrison, K. A., and R. C. Murphy. 1995. Isoleukotrienes are biologically active free radical products of lipid peroxidation. J. Biol. Chem. 270:17273.
Schütze, S. K. Potthoff, T. Machleidt, D. Berkovic, K. Wiegmann, and M. Krönke. 1992. TNF activates NF-κB by phosphatidylcholine-specific phospholipase C-induced "acidic" sphingomyelin breakdown. Cell 71:765.
Reddy, S. A. G., M. M. Chaturvedi, B. G. Darnay, H. Chan, M. Higuchi, and B. B. Aggarwal. 1994. Reconstitution of nuclear factor κB activation induced by tumor necrosis factor requires membrane-associated components. J. Biol. Chem. 269:25369.
Zumbansen, M., and W. Stoffel. 1997. Tumor necrosis factor α activates NF-κB in acid sphingomyelinase-deficient mouse embryonic fibroblasts. J. Biol. Chem. 272:10904.
Hannun, Y. A. 1994. The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem. 269:3125.
Schütze, S., T. Machleidt, and M. Krönke. 1994. The role of diacylglycerol and ceramide in tumor necrosis factor and interleukin-1 signal transduction. J. Leukocyte Biol. 56:533.
Segal, A. W., and A. Abo. 1993. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem. Sci. 18:43.
Perona, R., S. Montaner, L. Saniger, I. Sanchez-Perez, R. Bravo, and J. C. Lacal. 1997. Activation of the nuclear factor-κB by Rho, CDC42, and Rac-1 proteins. Genes Dev. 11:463.