Unpublished conference/Abstract (Scientific congresses and symposiums)BCCM/ULC: a collection of cyanobacteria linking Poles to Space
Wilmotte, Annick; Beets, Kim; Santoro, Mariano et al.
2018 • The FRS-FNRS Contact Group “Astrobiology: from stars and planets to extreme life”, in collaboration with the EOS ET-HOME project
No document available.
Abstract :
[en] The BCCM/ULC public collection funded by the Belgian Science Policy Office (BELSPO) aims to gather a representative portion of the cyanobacterial diversity with a focus on Polar biotopes (e.g. limnetic microbial mats, soil crusts, cryoconites, endolithes). It represents an exclusive Biological Resource Centre (BRC) where characterized polar cyanobacterial strains are available for researchers to study the taxonomy, biogeography, evolution, synthesis of secondary metabolites, adaptation to harsh environmental conditions, and genomic make-up. It currently holds 190 strains, including over 120 of Polar origin (online catalogue: http://bccm.belspo.be/catalogues/ulc-catalogue-search). Living cultures are regularly transferred, and the majority are also cryopreserved (as back-up), in order to assure their preservation and the rapid delivery of strains to clients for fundamental and applied research in both academia and industry. Genomic DNA is also available on request. The collection has obtained the ISO 9001:2015 certification for deposit and distribution of strains, as part of the multi-site certification for the Belgian Coordinated Collections of Microorganisms (BCCM) consortium. A polyphasic approach based on morphological and molecular identifications (based on SSU rRNA sequences) show that the strains belong to the Synechococcales, Oscillatoriales, Chroococcidiopsidales, Pleurocapsales, and Nostocales orders. This large diversity renders the BCCM/ULC collection particularly interesting for taxonomic, biogeographic and phylogenomic studies. Furthermore, the sequencing of the genomes of several strains has started. The BRC also aims to become a source for researchers to study further applications of cyanobacteria in astrobiology as shown by investigations of the resistance to desiccation and radiation of strains of Chroococcidiopsis sp. dominating rock-dwelling communities in extreme dry environments [1]. In paleontology, cyanobacteria represent model organisms thanks to their fundamental role in the oxygenation of the atmosphere and oceans during the Great Oxidation Event. Lastly, the mat-forming cyanobacterial strains may represent “critical organisms” in the investigation of the factors that determine the boundaries of microbial survival and growth on Earth and in the space environment, by virtue of the fact that they are components of microbial mat model systems which are more and more used to elucidate Earth’s past and the detection of life’s biosignatures.
References of the abstract :
Billi C. et al. (2013). Cyanobacteria from Extreme Deserts to Space. Advances in Microbiology, 2013, 3, 80-86.