No full text
Unpublished conference/Abstract (Scientific congresses and symposiums)
Advanced emulsion templated porous polymers via reversible deactivation radical polymerization
Debuigne, Antoine
2018Bordeaux Polymer Conference
 

Files


Full Text
No document available.

Send to



Details



Keywords :
radical polymerization; foam
Abstract :
[en] Macroporous polymer monoliths are remarkable materials used in several applications such as supported catalysis, chromatography, water purification, gas capture, to name but a few. The emulsion-templated polymerization method, often based on conventional radical polymerization, is a very popular and straightforward approach for preparing such porous polymers. Nevertheless, the demand for more and more sophisticated porous supports with controlled porosity, good mechanical properties and specific surface properties, is increasing and requires the development of innovative synthesis strategies. This communication reports the possible benefits of the reversible deactivation radical polymerization (RDRP) methods for the design of advanced macroporous monoliths via emulsion templated polymerization. For example, copolymers with precise architecture, composition and chain-end functionality, synthesized by RDRP, can be used as macromolecular surfactants for stabilizing various types of high and medium internal phase emulsion polymerizations leading to porous materials with tunable morphologies. Moreover, the physical and chemical anchoring of the macromolecular surfactants at the surface of the porous monoliths allows the functionalization of the porous supports while preserving their openness. Finally, RDRP gives access to specific surfactants able to stabilize CO2 in-ionic liquid (IL) emulsions leading to the single step synthesis of unique and valuable macroporous poly(ionic liquid)s/ILs gels. Overall, this presentation will emphasize the potential of RDRP for the emulsion-templated polymerization and the production of advanced functional macroporous monoliths.
Research center :
CESAM Complex and Entangled Systems from Atoms to Materials (CESAM)
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering
Chemistry
Author, co-author :
Debuigne, Antoine  ;  University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
Advanced emulsion templated porous polymers via reversible deactivation radical polymerization
Publication date :
28 May 2018
Event name :
Bordeaux Polymer Conference
Event place :
Bordeaux, France
Event date :
28/05/2018 - 31/05/2018
Audience :
International
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
Available on ORBi :
since 06 June 2018

Statistics


Number of views
68 (1 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi