[en] The hexaferrites have been intensively investigated as materials for permanent magnets, high-density recording media, microwave devices, bio-medical applications and, recently, as multiferroic materials. It is well known that the electrical, optical and magnetic properties of materials vary widely with the particle size and shape and with the degree of crystallinity. In general, the technologies for preparation of hexaferrites require high-temperature annealing, which impedes the fabrication of nanosized hexaferrites characterized by a narrow particle-size distribution. The microemulsion method has been proposed precisely in order to overcome the difficulties related to controlling the size distribution of the particles of oxide materials and, especially, hexaferrites, since one of the advantages of this technique is the preparation of very uniform particles. The high homogeneity of the nanosized precipitate particles produced is due to the fact that each of the aqueous drops acts as a nanosized reactor for nanoparticles formation.
The M-type hexaferrite is the most commonly studied member of the hexaferrite family. This review chapter will be focused on the synthesis and properties of hexaferrites (particularly nanosized hexaferrites) obtained by microemulsion. The different microemulsion systems will be presented and their influence on the structure and magnetic properties of the M-type hexaferrite will be discussed. A special emphasis will be placed on the preparation of hexaferrite powders with nanometer particle sizes via two approaches of the microemulsion technique, namely, single microemulsion and double microemulsion; original results will be presented.
Disciplines :
Physics Chemistry
Author, co-author :
Koutzarova, Tatyana; Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
Kolev, Svetoslav; Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
Ghelev, Ch; Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
Vertruyen, Bénédicte ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale
Zaleski, A; Institute of Low Temperatures and Structural Research, Polish Academy of Sciences, Wroclaw, Poland
Language :
English
Title :
Synthesis and investigation of the properties of hexaferrites obtained by microemulsion techniques
Publication date :
2016
Main work title :
Microemulsions: Systems, Properties and Applications
Topal, U. Mater. Sci. Eng. B 2011, 176, 1531-1536.
Saura-Múzquiz, M.; Granados-Miralles, C.; Stingaciu, M.; Bøjesen, E. D.; Li, Q.; Song, J.; Dong, M.; Eikeland, E.; Christensen, M. Nanoscale 2016, 8, 2857-2866.
Matsumoto, M.; Morisako, A.; Takei, Sh. J. Alloys Compd. 2001, 326, 215-220.
Zhuravlev, V. A.; Meshcheryakov, V. A. Russ. Phys. J. 2014, 56, 1387-1397.
Tkachenko, M. V.; Ol’khovik, L. P.; Kamzin A. S.; Keshri, S. Technical Phys. Lett., 2014, 40, 4-6.
Harris, V. G.; Geiler, A.; Chen, Y.; Yoon, S. D.; Wu, M.; Yang, A.; Chen, Z.; He, P.; Parimi, P. V.; Zuo, X.; Patton, C. E.; Abe, M.; Acher, O.; Vittoria, C. J. Magn. Magn. Mater. 2009, 321, 2035-2047.
Nicolaescu, I. J. Optoeletron. Adv. Mater. 2006, 8, 333-338.
Kostishyn, V. G.; Panina, L. V.; Kozhitov, L. V.; Timofeev, A. V.; Kovalev, A. N. J. Alloys Comp. 2015, 645, 297-300.
Scott, J. F. Nat. Mater. 2007, 6, 256-57.
Nan, C.-W.; Bichurin, M. I.; Dong, Sh.; Viehland, D.; Srinivasan, G. J. Appl. Phys. 2008, 103, Art. 031101.
Spaldin, N. A.; Cheong, S.-W.; Ramesh, R. Physics Today 2010, Oct., 38-43.
Zhang, S. Electric-Field Control of Magnetization and Electronic Transport in Ferromagnetic/Ferroelectric Heterostructures, Springer-Verlag: Berlin, Heidelberg, 2014.
Petrov, R. V.; Murthy, D. V. B.; Sreenivasulu, G. Srinivasan, G. Microw. Opt. Techn. Let. 2013, 55, 533-535.
Braun, P. B. Philips Res. Rep. 1957, 12, 491-548.
Smit, J.; Wijn, H. P. J. Ferrites; Phillips Technical Library: Eindhoven, The Netherlands, 1959.
Hibst, H. J. Magn. Magn. Mater. 1988, 74, 193-202.
Valenzuela, R. Magnetic Ceramics, Cambridge University Press: Cambridge, UK, 1994.
Pullar, R. Prog. Mater. Sci. 2012, 57, 1191-1334.
Skomski, R.; Coey, J. M. D. Permanent Magnetism; Institute of Physics Publishing: Bristol, 1999.
Went, J. J.; Rathenau, G. W.; Gorter, E. W.; van Oosterhout, G. W. Phys Rev. 1952, 86, 424-425.
Koutzarova, T.; Kolev, S.; Ghelev, Ch.; Grigorov, K.; Nedkov, I. In Advances in Nanoscale Magnetism; Aktas, B.; Mikailov, F.; Eds;. Springer: Berlin, Heidelberg, 2008, pp 183-203.
Givord, D.; Rossignol, M. F. In Rare-Earth Iron Permanent Magnets; Coey J. M D.; Ed.; Oxford University Press: Oxford, 1996, pp 218.
Kronmuller, H. phys. stat. sol. (b) 1987, 144, 385-396.
Kronmuller, H.; Durst, K-D.; Sagawa, M. J. Magn. Magn. Mater. 1988, 74, 291-302.
Kittel, C.; Galt, J. K. In Solid State Physics; Seitz, F.; Turnbull, D.; Eds;. Academic Press: New York, NY, 1956, vol 3, pp 437-564.
Aharoni, A.; Jakubovics, J. P. IEEE Trans. Magn. 1988, 24, 1892-1894.
Kronmuller, H. In Science and Technology of Nanostructured Magnetic Materials, Hadjipanayis, G. C.; Prinz G. A.; Eds.; Plenum Press: New York and London, 1990.
Shirk, B. T.; Buessem, W. R. J. Appl. Phys. 1969, 40, 1294-1296.
Candac, T. S.; Carpenter, E. E.; O’Connor, C. J.; John, V. T.; Li, S. IEEE Trans. Magn. 1998, 34, 1111-1113.
Pillai, V.; Kumar, P.; Hou, M. J.; Ayyub, P.; Shah, D. O. Adv. Coll. Int. Sci. 1995, 55, 241-269.
Pileni, M. P.; Ninham, B. W.; Kryzwicki, T. G.; Lisiecki, J. T. I.; Filankembo, A. Adv. Mater. 1999, 11, 1358-1362.
Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80-82.
Bahadur, D.; Rajakumar, S.; Kumar, A. J. Chem. Sci. 2006, 118, 15-21.
Bueno-Baques, D.; Padron Hernandez, E.; Matutes-Aquino, J.; Rezende, S. M.; Cornejo, D. R. J. Alloys Compound. 2004, 369, 158-161.
Hernandez-Gomez, P.; Torres, C.; de Francisco, C.; Munoz, J.; Alejos, O.; Iniguez, J. I.; Raposo, V. J. Magn. Magn. Mater. 2004, 272-276, e1843-1844.
Trukhanov, S. V.; Trukhanov, A. V.; Turchenko, V. A.; Kostishin, V. G.; Panina, L. V.; Kazakevich, I. S.; Balagurov, A. M. J. Magn. Magn. Mater. 2016, 417, 130-136.
Güner, S.; Auwal, I. A.; Baykal, A.; Sözeri, H. J. Magn. Magn. Mater. 2016, 416, 261-268.
Chang, P.; He, L.; Wei, D.; Wang, H. J. Eur. Ceram. Soc. 2016, 36, 2519-2524.
Neckenburger, E.; Severin, H.; Vogel, J. K.; Winkler, G. Z. Angew. Phys. 1964, 18, 65-68.
Tenzer, R. C. J. Appl. Phys. 1963, 34, 1267-1268.
Yu, H.-F.; Huang, K.-Ch. J. Mater. Res. 2002, 17, 199-203.
Kazin, P. E.; Trusov, L. A.; Kushnir, S. E.; Yaroshinskaya, N. V.; Petrov, N. A.; Jansen, M. J. Phys.: Conf. Ser. 2010, 200, Art. 072048.
Aharony, A. J. Magn. Magn. Mater. 1986, 54-57, 27-29.
Rezlescu, L.; Rezlescu, E.; Popa, P. D.; Rezlescu, N. J. Magn. Magn. Mater. 1999, 193, 288-290.
Muller, R.; Hiergeist, R.; Steinmetz, H.; Ayoub, N.; Fujisaki, M.; Schuppel, W. J. Magn Magn. Mater. 1999, 201, 34-37.
Shepherd, Ph.; Mallick, K.; Green, R. J. Magn. Magn. Mater. 2007, 311, 683-692.
Ogasawara, T.; Oliveira, M. A. S. J. Magn. Magn. Mater. 2000, 217, 147-154.
Janasi, S. R.; Emura, M.; Landgraf, F. J. G.; Rodrigues, D. J. Magn. Magn. Mater. 2002, 238, 168-172.
Pashkova, E. V.; Solovyova, E. D.; Kolodiazhnyi, T. V.; Ivanitskii, V. P.; Belous, A. G. J. Magn. Mang. Mater. 2014, 368, 1-7.
Gordani, G. R.; Ghasemi, A.; Saidi, A. Ceram. Intern. 2014, 40, 4945-4952.
Gordani, G. R.; Mohseni, M.; Ghasemi, A.; Hosseini, S. R. Mater. Res. Bull. 2016, 76, 187-194.
Mandizadeh, S.; Soofivand, F.; Salavati-Niasari, M.; Bagheri, S. J. Ind. Eng. Chem. 2015, 26, 167-172.
Auwal, I. A.; Ünal, B.; Güngüneş, H.; Shirsath, S. E., Baykal, A. Ceram. Intern. 2016, 42, 9100-9115.
Farzin, Y. A.; Mirzaee, O.; Ghasemi, A. J. Magn. Magn. Mater. 2014, 371, 14-19.
Petrila, I.; Tudorache, F. Superlattice. Microst. 2014, 70, 46-53.
Yu, J.; Tang, S.; Zhai, L.; Shi, Y.; Du, Y. Phys. B 2009, 404, 4253-4256.
Chun, S. H.; Chai, Y. S.; Jeon, B.-G.; Kim, H. J.; Oh, Y. S.; Kim, I.; Kim, H.; Jeon, B. J.; Haam, S. Y.; Park, J.-Y.; Lee, S. H.; Chung, J.-H.; Park, J.-H.; Kim, K. H. Phys. Rev. Lett. 2012, 108, Art. 177201.
Aydogan, E.; Kaya, S.; Dericioglu, A. F. Ceram. Intern. 2014, 40, 2331-2336.
Leung, R.; Hou, M. J.; Manohar, C.; Shah, D. O.; Chun, P. W. In: Macro- and Microemulsions; Shah, D. O.; Ed.; A. C. S. Symposium Series 272; American Chemical Society, Washington, DC, 1985; pp 325-344.
Shah, D. O. Micelles, Microemulsions, and Monolayers; Marcel Dekker, INC: New York, New York, 1998.
M. K. Sharma and D. O. Shah, In: Macro- and Microemulsions; ed. Shah, D. O.; Ed.; A. C. S. Symposium Series 272; American Chemical Society, Washington, DC, 1985; pp 1-18.
Shah, D. O. Macro- and Microemulsions; A. C. S. Symposium Series 272; American Chemical Society, Washington, DC, 1985.
Bandow, S.; Kimura, K.; Konno, K.; Kitahara, A. Jpn. J. Appl. Phys. 1987, 26 713-717.
Lee, K. H.; Sorensen, C. M.; Klabunde, K. J.; Hadjipanayis, G. C. IEEE Trans. Magn. 1992, 28, 3180-3182.
Holec, P.; Plocek, J.; Niznansky, D.; Vejpravova, J. P. J. Sol-Gel Sci. Technol. 2009, 51, 301-305.
Shultz, M. D.; Allsbrook, M. J.; Carpenter, E. E. J. Appl. Phys. 2007, 101, Art. 09M518.
Vidal-Vidal, J.; Rivas, J.; López-Quintela, M. A. Coll. Surf. A 2006, 288, 44-51.
Tueros, M. J.; Baum, L. A.; Borzi, R. A.; Stewart, S. J.; Mercader, R. C.; Marchetti, S. G.; Bengoa, J. F.; Mogni, L. V. Hyperfine Interact. 2003, 148, 103-108.
Wang, J.; Chong, P. F.; Ng, S. C.; Gan, L. M. Mater. Lett. 1997, 30, 217-221.
Zhou, X. Z.; Morrish, A. H.; Yang, Z.; Zeng, H.-X. J. Appl. Phys. 1994, 75, 5556-5558.
Ng, W. K.; Ding, J.; Chow, Y. Y.; Wang, S.; Shi, Y. J. Mater. Res. 1999, 15, 2151-2156.
Jacobo, S. E.; Civale, L.; Blesa, M. A. J. Magn. Magn. Mater. 2003, 260, 37-41.
Liu, X.; Wang, J.; Ding, J.; Chen, M. S.; Shen, Z. X. J. Mater. Chem. 2000, 10, 1745-1749.
Ding, J.; Liu, X. Y.; Wang, J.; Shi, Y. Mater. Lett. 2000, 44, 19-22.
Nabiyouni, G.; Ghanbari, D.; Yousofnejad, A.; Seraj, M. J. Ind. Eng. Chem.-US 2014, 20, 3425-3429.
Hong, Y. K.; Jung, H. S. J. Appl. Phys. 1999, 85, 5549-5551.
An, S. Y.; Shim, I.-B.; Kim, C. S. J. Appl. Phys. 2002, 91, 8465-8467.
Meng, Y. Y.; He, M. H.; Zeng, Q.; Jiao, D.L.; Shukla, S.; Ramanujan, R. V.; Liu, Z. W. J. Alloys Compd. 2014, 583, 220-225.
Sozeri, H.; Durmus Z.; Baykal, A.; Uysal, E. Mater. Sci. Eng. B 2012, 177, 949-955.
An, S. Y.; Lee, S. W.; Wha Lee, S.; Kim, Ch. S. J. Magn. Magn. Mater. 2002, 242, 413-415.
Choi, D. H.; Lee, S. W.; An, S. Y.; Park, S.-I.; Shim, I.-B.; Kim, Ch. S. IEEE Trans. Magn. 2003, 39, 2884-2886.
Sozeri, H. J. Magn, Magn. Mater. 2009, 321, 2717-2722.
Gonzalez-Angeles, A.; Mendoza-Suarez, G.; Gruskova, A.; Lipka, J.; Papanova, M.; Slama, J. J. Magn. Magn. Mater. 2005, 285, 450-455.
Ding, J.; Miao, W. F.; McCormick, P. G.; Street, R. J. Alloys Compd. 1998, 281, 32-36.
Tang, X.; Zhao, B. Y.; Hu, K. A. J. Mater. Sci. 2006, 41, 3867-3871.
Martirosyana, K. S.; Galstyan, E.; Hossain, S. M.; Wang, Y.-J.; Litvinov, D. Mater. Sci. Eng. B 2011, 176, 8-13.
Yu, H.-F. J. Magn. Magn. Mater. 2013, 341, 79-85.
Manikandan, M.; Venkateswaran, C. J. Magn. Magn. Mater. 2014, 358-359, 82-86.
Zhao, W.-Y.; Zhang, Q.-J.; Tang, X.-F.; Cheng, H.-B.; Zhai, P.-Ch. J. Appl. Phys. 2006, 99, art 08E909.
Shafie, M. S. E.; Hashim, M.; Ismail, I.; Kanagesan, S.; Fadzidah, M. I.; Idza, I. R.; Hajalilou, A.; Sabbaghizadeh, R. J. Mater. Sci.: Mater. Electron. 2014, 25, 3787-3794.
Ahmed, M. A.; Helmy, N.; El-Dek, S. I. Mater. Res. Bull. 2013, 48, 3394-3398.
Palla, B. J.; Shah, D. O.; Garcia-Casillasa, P.; Matutes-Aquino, J. A. J. Nanopart. Res. 1999, 1, 215-221.
Makovec, D.; Drofenik, M. Proc. 9th Int. Conf. on Ferrites; San Francisco, CA, 2004 823-828.
Drmota, A.; Žnidaršič, A.; Košak, A. J. Phys.: Conf. Ser. 2010, 200, Art. 082005.
Drmota, A.; Drofenik, M.; Koselj, J.; Žnidaršič, A. In Microemulsions - An Introduction to Properties and Applications; Najjar, R.; Ed.; InTech: Rijeka, Croatia, 2012.
Drmota, A.; Drofenik, M.; Znidarsic, A. Ceram. Int. 2012, 38, 973-979.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.