No full text
Article (Scientific journals)
Modelling the Arterial Wall by Finite Elements
Mosora, F.; Harmant, A.; Hallet, Claude et al.
1993In Archives Internationales de Physiologie, de Biochimie et de Biophysique, 101 (3, May-Jun), p. 185-91
Peer Reviewed verified by ORBi
 

Files


Full Text
No document available.

Send to



Details



Abstract :
[en] The mechanical behaviour of the arterial wall was determined theoretically utilizing some parameters of blood flow measured in vivo. Continuous experimental measurements of pressure and diameter were recorded in anesthetized dogs on the thoracic ascending and midabdominal aorta. The pressure was measured by using a catheter, and the diameter firstly, at the same site, by a plethysmograph with mercury gauge and secondly, by a sonomicrometer with ferroelectric ceramic transducers. The unstressed radius and thickness were measured at the end of each experiment in situ. Considering that the viscous component is not important relatively to the nonlinear component of the elasticity and utilizing several equations for Young modulus calculation (thick and thin wall circular cylindrical tube formulas and Bergel's equation) the following values were obtained for this parameter: 0.6 MPa-2 MPa in midabdominal aorta and 2 MPa-6.5 MPa in thoracic ascending aorta. The behaviour of the aorta wall was modelled considering an elastic law and using the finite element program "Lagamine" working in large deformations. The discretized equilibrium equations are non-linear and a unique axi-symmetric, iso-parametric element of 1 cm in length with 8 knots was used for this bi-dimensional problem. The theoretical estimation of radius vessel, utilizing a constant 5 MPa Young modulus and also a variable one, are in good agreement with the experimental results, showing that this finite element model can be applied to study mechanical properties of the arteries in physiological and pathological conditions.
Disciplines :
Materials science & engineering
Author, co-author :
Mosora, F.
Harmant, A.
Hallet, Claude ;  Centre Hospitalier Universitaire de Liège - CHU > Anesthésie et réanimation
Fossion, Anny ;  Université de Liège - ULiège > Relations académiques et scientifiques (Psycho et sc.éduc.)
Pochet, T.
Juchmes, J.
Cescotto, Serge ;  Université de Liège - ULiège > Département Argenco : Secteur MS2F > Mécanique des solides
Language :
English
Title :
Modelling the Arterial Wall by Finite Elements
Publication date :
1993
Journal title :
Archives Internationales de Physiologie, de Biochimie et de Biophysique
ISSN :
0778-3124
Publisher :
Vaillant Carmanne, Belgium
Volume :
101
Issue :
3, May-Jun
Pages :
185-91
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 02 February 2010

Statistics


Number of views
66 (5 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
10
Scopus citations®
without self-citations
10
OpenCitations
 
5

Bibliography


Similar publications



Contact ORBi