No document available.
Abstract :
[en] Polyurethane (PU) is one of the most important family of polymers that is largely used in coatings, foams, elastomers, sealants/adhesives in the building, automotive, household and biomedical sectors. Classically, PU is produced by a step-growth polymerization between di- or polyols and di- or polyisocyanates. However, isocyanates are toxic and produced from even more toxic phosgene. To avoid the use of isocyanates, different synthetic alternatives for PUs have been developed. One of the most studied approaches relies on the step-growth polymerization between di- or polyamines and CO2-sourced di- or polycyclic carbonates, affording poly(β-hydroxyurethane)s (PHUs) that showed improved thermal, chemical and mechanical properties compared to conventional PUs. In this study, we would like to show how PHUs can be exploited to design (bio- and) CO2-based foams for thermal insulation as well as novel reinforced hydrogels for potential biomedical applications.
First, we developed a highly efficient binary organocatalyst for the fast and selective synthesis of cyclic carbonates under very mild conditions from CO2 and various epoxides, including bio-based ones. Secondly, these cyclic carbonates were valorised as monomers for the preparation of foams and hydrogels based on PHUs.
In this poster, we will describe the preparation and characterization of these PHU foams and hydrogels, and highlight their huge potential as thermal insulating materials (PHU foams) or as biomaterials for shock absorption properties (PHU hydrogels).