No full text
Paper published in a book (Scientific congresses and symposiums)
Inference in a stochastic SIR epidemic model using Bayesian filtering, Rennes, France, 4-8 July, 2016, pp.41-46.
Bonou, Wilfried; Lambert, Philippe
2016In Proceedings of the 31st International Workshop on Statistical Modelling, Rennes, France, 4-8 July, 2016
Peer reviewed
 

Files


Full Text
No document available.

Send to



Details



Keywords :
Stochastic SIR Epidemic Model; State Space Models; Sequential Monte Carlo; Particle Marginal Metropolis-Hastings.
Abstract :
[en] We consider State Space Models (SSMs) as Discrete Time Markov Chains (DTMC) to describe a stochastic SIR Epidemic dynamic. The unknown static parameters are estimated by combining Sequential Monte Carlo and Markov Chain Monte Carlo algorithms (SMC-within-MCMC) also known as Particle Marginal Metropolis-Hastings (PMMH). The performances of the strategy are evaluated using simulations. The method is illustrated by modeling the spread of a viral infection in a small community.
Disciplines :
Mathematics
Author, co-author :
Bonou, Wilfried ;  Université de Liège > Faculté des sciences sociales > Méthodes quantitatives en sciences sociales
Lambert, Philippe;  Université de Liège - ULiège > Faculté des sciences sociales > Méthodes quantitatives en sciences sociales
Language :
English
Title :
Inference in a stochastic SIR epidemic model using Bayesian filtering, Rennes, France, 4-8 July, 2016, pp.41-46.
Publication date :
July 2016
Event name :
The 31st International Workshop on Statistical Modelling
Event place :
Rennes, France
Event date :
4-8 July, 2016
By request :
Yes
Audience :
International
Main work title :
Proceedings of the 31st International Workshop on Statistical Modelling, Rennes, France, 4-8 July, 2016
Peer reviewed :
Peer reviewed
Commentary :
The paper has been selected as the Best IWSM 2016 Student Paper.
Available on ORBi :
since 02 April 2017

Statistics


Number of views
61 (10 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi