No document available.
Keywords :
Animals; Cell Count; Cell Survival/physiology; Cells, Cultured; Nerve Growth Factors/physiology; Nerve Regeneration/physiology; Neurites/physiology; Rats; Spiral Ganglion/physiology; Vestibulocochlear Nerve/physiology
Abstract :
[en] Injury to either the peripheral or central nervous system results in the accumulation of growth factors at the wound site. Some of these growth factors have been shown to participate in the neural repair process. Adult auditory neurons grown in dissociated spiral ganglion cell cultures are injured (i.e. bilateral axotomy) as a result of the initial preparation of these cultures. Therefore, cell cultures of dissociated spiral ganglia provide a model for the study of repair processes of adult auditory neurons (e.g. effects of exogenous growth factors on the process of neuritogenesis by injured neurons). Auditory neurons do not survive in these dissociated ganglion cell cultures when only exogenous NGF is added to the defined culture medium. Previous work has identified substrate bound basic fibroblast growth factor (bFGF) as a survival factor for adult auditory neurons in vitro. Auditory neurons cultured on substrate bound bFGF also do not show increased survival in response to the addition of increasing concentrations of nerve growth factor (NGF) to the defined medium. This is in sharp contrast to the pronounced neurite outgrowth-promoting effects (concentration dependent) observed when exogenous NGF is added to adult auditory neurons cultured on substrate bound bFGF. We propose that several neuronotrophic factors (e.g. TGFB1, bFGF, NGF and other neurotrophins) are active in the spiral ganglions' response to injury. Several of these growth factors (i.e. bFGF, NGF) act in cooperation to promote the regeneration or repair of severed or traumatized neuritic processes.
Scopus citations®
without self-citations
22