No document available.
Abstract :
[en] We predict a universal echo phenomenon present in the time evolution of many-body states of interacting quantum systems described by Fermi-Hubbard models. It consists of the coherent revival of transition probabilities echoing a sudden flip of the spins that, contrary to its single-particle (Hahn) version, is not dephased by interactions or spin-orbit coupling. The many-body spin echo signal has a universal shape independent of the interaction strength, and an amplitude and sign depending only on combinatorial relations between the number of particles and the number of applied spin flips. Our analytical predictions, based on semiclassical interfering amplitudes in Fock space associated with chaotic mean-field solutions, are tested against extensive numerical simulations confirming that the coherent origin of the echo lies in the existence of anti-unitary symmetries.