No document available.
Abstract :
[en] The thermochemical method called “biomass gasification” is generating emphatic interest for the production of bio-Syngas (CO + H2) since this process presents the advantage of being renewable without emitting CO2. However, in practical applications, there are still some technical problems due to high tars concentration in the outlet gas which can condensate and clog the pipes.
Many studies have highlighted the fact that the tar elimination via catalytic reforming seem to be the more practical and economical solution. The required properties of the catalysts are determined by its location: inside the reactor (primary catalyst) or outside of the reactor (secondary catalyst). Primary catalysts are generally robust, non-toxic, cheap and they are almost uniquely destined to fluidized bed reactors. Secondary catalysts can be used at the exit of both fluidized and fixed bed reactors. They are characterized by a tailored mesoporous shape, a controlled active site dispersion and an adapted elemental composition [1]. In this work , we decided to focus on designing materials for secondary catalytic applications, i.e. working at relatively low temperature (~650°C) with no mechanical stress.
The supports were made of γ-Al2O3 synthesized via an easy Sol-Gel method. During their synthesis, these supports were doped with 10%wt of nickel and various combinations of metallic dopants (Co, Cu, Fe, Mn, Mo) in the aim of enhancing their catalytic activities and lifetime.