Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria. Structural comparison of the predicted protein sequences
[en] We focused on the temperature adaptation of triosephosphate isomerase (TIM; E.C. 5.3.1.1.) by comparing the structure of TIMs isolated from bacterial organisms living in either cold or hot environments. The TIM gene from psychrophilic bacteria Moraxella sp. TA137 was cloned and its nucleotide sequence determined. Its deduced amino acid sequence revealed 34% identity with the thermophilic bacteria Bacillus stearothermophilus TIM. Expression vectors were constructed and recombinant Moraxella TA137 and Bacillus stearothermophilus TIMs were overproduced and purified to homogeneity. Recombinant TIM inactivation constants (Ki), measured at various temperatures, compared to those of the mesophilic Escherichia coli recombinant TIM clearly show that Moraxella TA137 and B. stearothermophilus TIMs have respectively psychrophilic and thermophilic characteristics. To try to elucidate the structure-thermolability and structure-thermostability relationship, factors affecting the overall stability of these two TIMs were examined, based on the alignment with the mesophilic chicken TIM, the three-dimensional structure of which is already known. From this comparison, it appears that the adaptability of TIM to high temperature is favored by better stabilizing residues for the helix dipole as well as better helix-forming residues whereas the adaptability of TIM to low temperature seems to reside in the nature of helix-capping residues.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Rentier-Delrue, Françoise ; Université de Liège - ULiège > Département des sciences de la vie > Biologie et génétique moléculaire - GIGA-R : Coordination scientifique
Mande, Shekhar C
Moyens, Sylvianne
Terpstra, Peter
Mainfroid, Véronique
Goraj, Karine
Lion, Michelle ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Hol, Wim G
Martial, Joseph ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Language :
English
Title :
Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria. Structural comparison of the predicted protein sequences
Ahern, T. J., Casal, J. T., Petsko, G. A. & Klibanov, A. M. (1987). Control of oligomeric enzyme thermostability by protein engineering. Proc. Nat. Acad. Sci., U.S.A. 84, 675-679.
Alber, T., Banner, D. W., Bloomer, A. C., Petsko, G. A., Phillips, D. C., Rivers, P. S. & Wilson, I. A. (1981). On the three-dimensional structure and catalytic mechanism of triosephosphate isomerase. Phil. Trans. Roy. Soc. London, 293, 159-171.
Argos, P., Rossmann, M. G., Grau, U. M., Zuber, H., Frank, G. & Tratschin, J. D. (1979). Thermal stability and protein structure. Biochemistry, 18, 5698-5703.
Banner, D. W., Bloomer, A. C., Petsko, G. A., Phillips, D. C., Pogson, O. I., Wilson, I. A., Corran, P. H., Furth, A. J., Alilman, J. D., Offord, R. E., Priddle, J. D. & Waley, S. G. (1975). Structure of muscle triosephosphate isomerase determined crystallo-graphically at 2-5 A resolution using amino aeid sequence data. Nature (Loudon), 255, 609-614.
Blagdon, D. E. & Goodman, M. (1975). Mechanisms of protein and polypeptides helix initiation. Biopolymers, 14, 241-245.
Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72. 248-254.
Casal, J. I., Ahern, T. J., Daveport, R. C., Petsko, G. A. & Klibanov, A. M. (1987). Subunit interface of triosephosphate isomerase: site-directed mutagenesis and characterization of altered enzyme. Biochemistry, 26, 1258-1264.
Creighton, T. E. (1991). Stability of folded conformation. Curr. Opin. Struct. Biol. 1, 5-16.
Feller G., Thiry, M., Arpigny, J. L., Mergeav, M. & Gerday, C. (1990). Lipases from psychrotrophic Antarctic bacteria. FEMS Microbiol. Letters, 66. 239-244.
Feller, G., Thiry, M. & Gerday, C. (1991). Nucleotide sequence of the lipase gene Up2 from the Antarctic psychrotroph Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine residues. DNA Cell Biol. 10, 381-388.
Feller, G., Lonhienne, T., Deroanne, C., Libioulle, C., Vanbeumen, J. & Gerday, C. (1992). Purification, characterization and nucleotide sequence of the thermolabile a-amylase from the Antarctic psychro-trnph Alteromonas Haloplanctis A23. J Biol. Chew. 267, 5217-5221.
Fontana, A. (1991). Analysis and modulation of protein stability. Curr. Opin. Biotech. 2, 551-561.
Hall, J. G. (1985). The adaptation of enzymes to temperature: catalytic characterization of glucosephosphate isomerase homologues isolated from Mytilus edulis and Isognomon alatus, bivalve molluscs inhabiting different thermal environments. Mol. Biol. Evol. 2, 251-269.
Higgins, D. G. & Sharp, P. M. (1988). Package for performing multiple alignment on a microcomputer. Gene, 73, 237-244.
Hoi, W. G. J., van Duijnen, P. T. & Berendsen, H. J. C. (1978). The a-helix dipole and the properties of proteins. Nature (London), 273, 443-446.
Jaenicke, R. (1990). Protein structure and function at low temperatures. Phil. Trans. Roy. Son. London, 326, 535-553.
Karplus, P. A. & Shulz, G. E. (1985). Prediction of chain flexibility in proteins. Natuurwissenschaften, 72, 212-213.
Klempnauer, K. H., Ramsay, G., Bishop, J. M., Moscovici, M. G., Moscovici, E., McGrath, J. P. & Levinson, A, D. (1983). The product of the retroviral transforming gene v-myb is a truncated version of the protein encoded by the cellular oncogene c-mvb. Cell, 33, 345-355.
Klibanov, A. M. & Ahern, T. J, (1987). Thermal stability of proteins. In Protein Engineering (Oxender, D. L. & Fox, C. F., eds), pp. 213-218. Alan Liss, New York.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature (London), 227, 680-685.
L’Hoir, O., Renard, A. & Martial, J. A. (1990). Expression in E. coli of two mutated genes encoding the cholera toxin B subunit. Gene, 89, 47-52.
Lolis, E., Alber, T., Davenport, R. C., Rose, D., Hartman, F. C. & Petsko, G. A. (1990). Structure of the yeast triosephosphate isomerase at P9A resolution. Biochemistry, 29, 6609-6618.
Matthews, B. YV. (1991). Mutational analysis of protein stability. Curr. Opin. Struct. Biol. 1, 17-21.
Matthews, B. W., Nicholson, H. & Becktel, W. J. (1987). Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc. Nat. Acad. Sci., U.S.A. 84, 6663-6667.
Menendez-Arias, L, & Argos, P. (1989). Sequence statistics point to residue substitutions in a-helices. J. Mol. Biol. 206, 397-406.
Merkler, D. J., Farrington, G. K. & YVedler, F. C. (1981). Protein stability, correlation between calculated macroscopic parameters and growth temperature for closely related thermophiles. Int. J. Pept. Res. 18, 430-442.
Messing, J. (1983). New M13 vectors for cloning. Methods Enzymol. 101, 20-78.
Miller, S., Lesk, A. M., Janin, J. & Clothia, C. (1987). The accessible surface area and stability of oligomeric proteins. Nature (London), 328. 834-836.
Misset, O. & Opperdoes, F. R. (1984). Simultaneous purification of hexokinase class I fructose-biphosphate aldolase, triosephosphate isomerase and phospho-glycerate kinase from Trypanosoma brucei. Eur. J. Biochem. 144, 475-483.
Mitchinson, C. & Baldwin, R. L. (1986). The design and production of semisynthetic ribonucleases with increased thermostability by incorporation of S-peptide analogues with enhanced helical stability-Proteins, Struct. Fund. Genet. 1, 23-33.
Morita, R. Y. (1975). Psychrophilic bacteria. Bacteriol. Rev. 39, 144-167.
Mrabet, N. T., Van de Broeck, A., Van den Brande, L, Stanssens, P., Laroche, Y., Lambeir, A. M., Matthijssens, G., Jenkins, J., Chiadmi, M., Van Tilbeurgh, H., Rey, F., Janin, J., Quax, V. J., Rasters, I., Maeyer, M. D. & Dodak, S. J. (1992). Arginine residues as stabilising elements in proteins. Biochemistry, 31, 2239-2253.
Nickbarg, E. B., Davenport, R. C., Petsko, G. A. & Knowles, J. R. (1988). Triosephosphate isomerase: removal of a putatively electrophilic histidine results in subtle change in catalytic mechanism. Biochemistry, 27, 5948-5960.
Pichersky, E., Gottlieb, L. B. & Hess, J. F. (1984). Nucleotide sequence of the triosephosphate isomerase gene of Escherichia coli. Mol. Gen. Genet. 195, 314-319.
Ponnuswamy, P. K., Muthusamv, R. & Manavalan, P. (1982). Amino acid composition and thermal stability of proteins. Int. J. Biol. Macromol. 4, 186-190.
Raines, R. T., Sutton, E. L., Straus, D. R., Gilbert, W. & Knowles, J. R. (1986). Reaction energetics of a mutant triosephosphate isomerase in which the active-site glutamate has been changed to aspartate. Biochemistry, 25, 7142-7154.
Raleigh, E. A. & YVilson, G. (1986). Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc. Nat. Acad. Sci., U.S.A. 83, 9070-9074.
Rice, P. A., Goldman, A. & Steitz, T. A. (1990). A helix-turn-strand structural motif common in a-jS proteins. Proteins, Struct. Fund. Genet. 8, 334-340.
Richardson, J. S. & Richardson, D. C. (1988). Amino acid preferences for specific locations at the ends of a-helices. Science, 240, 1648-1652.
Rosenberg, A. H., Lade, B. N., Chui, D. S., Lin, S. W., Dunn, J. J. & Studier, F. W. (1987), Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene, 56, 125-135.
Serrano, L, & Fersht, A. R. (1989). Helix capping and stability, Nature (London), 342, 296-299.
Shoemaker, K. R., Kim, P. S., York, E. J., Stewart, J. M., Baldwin, R. L. (1987). Tests of the helix dipole model for stabilisation of a-helices. Nature (London), 326, 563-567.
Somero, G. N. (1977). Temperature as selective factor in protein evolution: the adaptational strategy of ‘ compromise”. J. Exp, Zool. 194, 175-188.
Somero, G. N. (1983). Environmental adaptation of proteins: strategies for the conservation of critical, functional and structural traits. Comp. Biockem. Physiol, 76A, 621-633.
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503-517.
Straus, D. & Gilbert, W. (1985). Chicken triosephosphate isomerase complements an Escherichia coli deficiency. Proc, Nat. Acad. Sci., U.S.A. 82, 2014-2018.
Studier, F. W. & Moffatt, B. A. (1986). Use of the bacteriophage T7 RNA polymerase to direct selective high level expression of cloned genes. J. Mol. Biol. 186, 113-130.
Wierenga, R. K., Kalk, K. H. & Hoi, W. G. J. (1987). Structure determination of the glycosomal triosephosphate isomerase from Trypanosoma brucei at 2-4 A resolution. J. Mol. Biol. 198, 109-121.
Wierenga, R. K., Noble, M. E. M. & Davenport, R. C. (1992). Comparison of the refined crystal structures of liganded and unliganded chicken, yeast and trypanosomal triosephosphate isomerase. J. Mol. Biol. 224, 1115-1126.
Zuber, H. (1988). Temperature adaptation of lactate dehydrogenase structural, functional and genetic aspects. Biophys. Chem. 29, 171-179.