No full text
Unpublished conference/Abstract (Scientific congresses and symposiums)
Functional degradable polymers for advanced drug delivery systems
Cajot, Sébastien; Riva, Raphaël; Jérôme, Christine
2012Japan-Belgium Symposium on Polymer Science
 

Files


Full Text
No document available.

Send to



Details



Keywords :
biomaterial; nanomedicine
Abstract :
[en] Nowadays, polymer micelles have attracted an increasing interest in pharmaceutical research because they could be used as efficient drug delivery systems. Micelles of amphiphilic block copolymers are supramolecular core-shell type assemblies of several tens of nanometers in diameter. In principle, the micelle core is usually constructed with biodegradable hydrophobic polymers such as aliphatic polyesters, e.g. poly(ε-caprolactone) (PCL), which serves as a reservoir for the incorporation of various lipophilic drugs. Water soluble poly(ethylene oxide) (PEO) is most frequently used to build the micelle corona because it is very efficient in preventing protein adsorption at surfaces and in stabilizing micelles in the blood compartment, making particles invisible to the body defense system. Even if micelles get a high stability in aqueous media thanks to their low critical micellar concentration, micelle dissociation is not always preserved when they are injected in the blood compartment. A way to provide the micelle stability during their administration is to cross-link them. Different kinds of cross-linked micelles can be investigated depending on the localization of the cross-linking. Shell cross-linked micelles or nanocage structures with a degradable core have the great advantage to reach drug encapsulation with a high loading rate. However, cross-linking the hydrophilic shell may affect the stealthiness of the carrier. Thus, we have designed reversibly cross-linked micelles by introducing the cross-linking bridges in the hydrophobic segment of the block copolymer, rather than in the hydrophilic one, leading so to more internal cross-linking and thus preserving the mobility of the hydrophilic segment. Three different localizations of the cross-linking has been targeted; (i) loose core cross-linking of a core-corona system, (ii) tight core cross-linking of a core-shell-corona system (the shell and the core being both hydrophobic and the corona hydrophilic) and (iii) tight shell cross-linking of a similar core-shell-corona system. To reach this goal, three types of amphiphilic copolymers have been used bearing pendent azide groups in the hydrophobic segment. These copolymers have been obtained by starting the ring-opening polymerization of ε-CL and a functional CL, either as a mixture or sequentially from a poly(ethylene oxide) macroinitiator leading to the three targeted architectures. The azide groups located along the PCL backbone have then been used to cross-link the micelles by the Huisgens cycloaddition with a bis-alkyne cross-linker. The choice of this cross-linker has also taken into account the requirement to make the cross-linking reversible. For that purpose, disulfide bridges have been selected in order to impart reversibility to the cross-linking by intracellular reduction. Indeed, the marked concentration difference of glutathione between extra- and intra-cellular environments has already been used to trigger drug release by intracellular disulfide bond cleavage. Accordingly, a bis-alkyne disulfide molecule has been chosen as cross-linker. The micellization and cross-linking of these amphiphilic azido macromolecules have been studied. The reversibility of the cross-linking in reductive environment and the cross-linked micelles stealthiness have been tested.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering
Chemistry
Author, co-author :
Cajot, Sébastien;  University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Riva, Raphaël ;  University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Jérôme, Christine  ;  University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
Functional degradable polymers for advanced drug delivery systems
Publication date :
September 2012
Event name :
Japan-Belgium Symposium on Polymer Science
Event place :
Nara, Japan
Event date :
9/09/2012 - 12/09/2012
By request :
Yes
Audience :
International
Commentary :
This oral communication was presented by Christine Jérôme
Available on ORBi :
since 04 February 2016

Statistics


Number of views
58 (2 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi