Alvarez TL et al (2012) Concurrent vision dysfunctions in convergence insufficiency with traumatic brain injury. Optom Vis Sci 89(12): 1740-1751
Bardin JC et al (2011) Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury. Brain 134(Pt 3): 769-782
Bekinschtein TA et al (2008) Can electromyography objectively detect voluntary movement in disorders of consciousness? J Neurol Neurosurg Psychiatry 79(7): 826-828
Bianchi L et al (2010) Which physiological components are more suitable for visual ERP based brain-computer interface? A preliminary MEG/EEG study. Brain Topogr 23(2): 180-185
Birbaumer N (1997) Slow cortical potentials: their origin, meaning, and clinical use. In: van Boxtel GJM, Böcker K (eds) Brain and behavior past, present, and future. Tilburg University Press, Tilburg, pp 25-39
Birbaumer N (2006) Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 43(6): 517-532
Birbaumer N et al (1999) A spelling device for the paralysed. Nature 398(6725): 297-298
Birbaumer N et al (2000) The thought translation device (TTD) for completely paralyzed patients. IEEE Trans Rehabil Eng 8(2): 190-193
Birbaumer N et al (2012) Ideomotor silence: the case of complete paralysis and brain-computer interfaces (BCI). Psychol Res 76(2): 183-191
Boly M, Seth AK (2012) Modes and models in disorders of consciousness science. Arch Ital Biol 150(2-3): 172-184
Bruno MA et al (2011) From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness. J Neurol 258(7): 1373-1384
Bruno MA et al (2012) Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients. J Neurol 259(6): 1087-1098
Casali AG et al (2013) A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med 5(198): 198ra105
Chatelle C et al (2012) Brain-computer interfacing in disorders of consciousness. Brain Inj 26(12): 1510-1522
Chatelle C, Laureys S, Noirhomme Q (2014) BCI and diagnosis. In: Gerd Grübler, Elisabeth Hildt (ed) Brain-computer- interfaces in their ethical, social and cultural contexts. Springer, Dordrecht
Chennu S et al (2013) Dissociable endogenous and exogenous attention in disorders of consciousness. Neuroimage Clin 3: 450-461
Citi L et al (2008) P300-based BCI mouse with genetically- optimized analogue control. IEEE Trans Neural Syst Rehabil Eng 16(1): 51-61
Combaz A et al (2013) A comparison of two spelling Brain-Computer Interfaces based on visual P3 and SSVEP in Locked-In Syndrome. PLoS One 8(9): e73691
Cruse D et al (2011) Bedside detection of awareness in the vegetative state. Lancet 378(9809): 2088-2094
Cruse D et al (2012a) The relationship between aetiology and covert cognition in the minimally-conscious state. Neurology 78(11): 816-822
Cruse D et al (2012b) Detecting awareness in the vegetative state: electroencephalographic evidence for attempted movements to command. PLoS One 7(11): e49933
Cruse D et al (2013) Reanalysis of "Bedside detection of awareness in the vegetative state: a cohort study" - Authors' reply. Lancet 381(9863): 291-292
Cui X et al (2007) Vividness of mental imagery: individual variability can be measured objectively. Vision Res 47(4): 474-478
Dickstein R et al (2014) Motor imagery group practice for gait rehabilitation in individuals with post-stroke hemiparesis: a pilot study. NeuroRehabilitation 34(2): 267-276
Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans Rehabil Eng 8(2): 174-179
Elbert T et al (1980) Biofeedback of slow cortical potentials. I. Electroencephalogr Clin Neurophysiol 48(3): 293-301
Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing eventrelated brain potentials. Electroencephalogr Clin Neurophysiol 70(6): 510-523
Faugeras F et al (2011) Probing consciousness with eventrelated potentials in the vegetative state. Neurology 77(3): 264-268
Fiori F et al (2013) Exploring motor and visual imagery in Amyotrophic Lateral Sclerosis. Exp Brain Res 226(4): 537-547
Giacino JT (1997) Disorders of consciousness: differential diagnosis and neuropathologic features. Semin Neurol 17(2): 105-111
Giacino J et al (2002) The minimally conscious state: definition and diagnostic criteria. Neurology 58(3): 349-353
Gibson RM et al (2014) Complexity and familiarity enhance single-trial detectability of imagined movements with electroencephalography. Clin Neurophysiol 125(8): 1556-1567
Goldfine AM et al (2011) Determination of awareness in patients with severe brain injury using EEG power spectral analysis. Clin Neurophysiol 122(11): 2157-2168
Goldfine AM et al (2013) Reanalysis of Bedside detection of awareness in the vegetative state: a cohort study. Lancet 381(9863): 289-291
Gray M et al (2003) Cortical neurophysiology of anticipatory anxiety: an investigation utilizing steady state probe topography (SSPT). Neuroimage 20(2): 975-986
Guger C et al (2003) How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Syst Rehabil Eng 11(2): 145-147
Guger C et al (2009) How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci Lett 462(1): 94-98
Halder S et al (2010) An auditory oddball brain-computer interface for binary choices. Clin Neurophysiol 121(4): 516-523
Hill NJ et al (2006) Classifying EEG and ECoG signals without subject training for fast BCI implementation: comparison of nonparalyzed and completely paralyzed subjects. IEEE Trans Neural Syst Rehabil Eng 14(2): 183-186
Hochberg LR et al (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099): 164-171
Hoffmann U et al (2008) An efficient P300-based braincomputer interface for disabled subjects. J Neurosci Methods 167(1): 115-125
Jackson PL et al (2001) Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch Phys Med Rehabil 82(8): 1133-1141
Kasahara T et al (2012) The correlation between motor impairments and event-related desynchronization during motor imagery in ALS patients. BMC Neurosci 13: 66.
Kaufmann T et al (2011) ERPs contributing to classifi - cation in the P300 BCI. In: Proceedings of the 5th International Brain-Computer Interface Conference. Graz University of Technology, Austria
King JR et al (2013) Information sharing in the brain indexes consciousness in noncommunicative patients. Curr Biol 23(19): 1914-1919
Kleih SC et al (2010) Motivation modulates the P300 amplitude during brain-computer interface use. Clin Neurophysiol 121(7): 1023-1031
Kubler A, Birbaumer N (2008) Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol 119(11): 2658-2666
Kubler A et al (1999) The thought translation device: a neurophysiological approach to communication in total motor paralysis. Exp Brain Res 124(2): 223-232
Kubler A et al (2006) BCI Meeting 2005-workshop on clinical issues and applications. IEEE Trans Neural Syst Rehabil Eng 14(2): 131-134
Kubler A et al (2009) A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients. Ann N Y Acad Sci 1157: 90-100
Laureys S et al (2005) The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless? Prog Brain Res 150: 495-511
Laureys S et al (2010) Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med 8: 68
Lee JH et al (2009) Brain-machine interface via realtime fMRI: preliminary study on thought-controlled robotic arm. Neurosci Lett 450(1): 1-6
Lesenfants D et al (2011) Design of a novel covert SSVEPbased BCI. In: Proceedings of the 5th International Brain-Computer Interface Conference. University of Technology Publishing House, Graz, Austria
Lew HL et al (2009) Auditory and visual impairments in patients with blast-related traumatic brain injury: Effect of dual sensory impairment on Functional Independence Measure. J Rehabil Res Dev 46(6): 819-826
Logie RH et al (2011) Low and high imagers activate networks differentially in mental rotation. Neuropsychologia 49(11): 3071-3077
Luauté J et al (2010) Long-term outcomes of chronic minimally conscious and vegetative states. Neurology 75(3): 246-252
Lugo ZR et al (2014) A vibrotactile P300-based braincomputer interface for consciousness detection and communication. Clin EEG Neurosci 45(1): 14-21
Lulé D et al (2013) Probing command following in patients with disorders of consciousness using a brain- computer interface. Clin Neurophysiol 124(1): 101-106
Majerus S et al (2009) The problem of aphasia in the assessment of consciousness in brain-damaged patients. Prog Brain Res 177: 49-61
Malinowska U et al (2013) Electroencephalographic profiles for differentiation of disorders of consciousness. Biomed Eng Online 12(1): 109
Manyakov NV et al (2011) Comparison of classification methods for P300 brain-computer interface on disabled subjects. Comput Intell Neurosci 2011: 519868
Monti MM, Coleman MR, Owen AM (2009) Executive functions in the absence of behavior: functional imaging of the minimally conscious state. Prog Brain Res 177: 249-260
Monti MM et al (2010) Willful modulation of brain activity in disorders of consciousness. N Engl J Med 362(7): 579-589
Mugler EM et al (2010) Design and implementation of a P300-based brain-computer interface for controlling an internet browser. IEEE Trans Neural Syst Rehabil Eng 18(6): 599-609
Müller-Putz GR et al (2013) A single-switch bci based on passive and imagined movements: toward restoring communication in minimally conscious patients. Int J Neural Syst 23(2): 1250037
Naci L, Owen AM (2013) Making every word count for nonresponsive patients. JAMA Neurol 70(10): 1235-1241
Nakase-Richardson R et al (2009) Emergence from minimally conscious state: insights from evaluation of posttraumatic confusion. Neurology 73(14): 1120-1126
Nam CS, Woo J, Bahn S (2012) Severe motor disability affects functional cortical integration in the context of brain-computer interface (BCI) use. Ergonomics 55(5): 581-591
Neuper C et al (2003) Clinical application of an EEGbased brain-computer interface: a case study in a patient with severe motor impairment. Clin Neurophysiol 114(3): 399-409
Neuper C et al (2005) Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res Cogn Brain Res 25(3): 668-677
Nijboer F et al (2008) A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119(8): 1909-1916
Nijboer F, Birbaumer N, Kubler A (2010) The influence of psychological state and motivation on brain- computer interface performance in patients with amyotrophic lateral sclerosis - a longitudinal study. Front Neurosci 4: 55
Oostra KM et al (2012) Motor imagery ability in patients with traumatic brain injury. Arch Phys Med Rehabil 93(5): 828-833
Owen AM et al (2006) Detecting awareness in the vegetative state. Science 313(5792): 1402
Page SJ, Levine P, Leonard A (2007) Mental practice in chronic stroke: results of a randomized, placebocontrolled trial. Stroke 38(4): 1293-1297
Page SJ et al (2009) Cortical plasticity following motor skill learning during mental practice in stroke. Neurorehabil Neural Repair 23(4): 382-388
Parini S et al (2009) A robust and self-paced BCI system based on a four class SSVEP paradigm: algorithms and protocols for a high-transfer-rate direct brain communication. Comput Intell Neurosci 864564
Pfurtscheller G, Lopes da Silva FH (1999) Eventrelated EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11): 1842-1857
Pfurtscheller G et al (1997) EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 103(6): 642-651
Pham M et al (2005) An auditory brain-computer interface based on the self-regulation of slow cortical potentials. Neurorehabil Neural Repair 19(3): 206-218
Phillips CL et al (2011) "Relevance vector machine" consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients. Neuroimage 56(2): 797-808
Piccione F et al (2006) P300-based brain computer interface: reliability and performance in healthy and paralysed participants. Clin Neurophysiol 117(3): 531-537
Pichiorri F et al (2011) Sensorimotor rhythm-based braincomputer interface training: the impact on motor cortical responsiveness. J Neural Eng 8(2): 025020
Plum F, Posner J (1966) The diagnosis of stupor and coma, F.A. Davis Co., Philadelphia
Pogoda TK et al (2012) Multisensory impairment reported by veterans with and without mild traumatic brain injury history. J Rehabil Res Dev 49(7): 971-984
Pokorny C et al (2013) The auditory P300-based singleswitch brain-computer interface: paradigm transition from healthy subjects to minimally conscious patients. Artif Intell Med 59(2): 81-90
Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10): 2128-2148
Prasad G et al (2010) Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J Neuroeng Rehabil 7: 60
Regan D (1966) Some characteristics of average steadystate and transient responses evoked by modulated light. Electroencephalogr Clin Neurophysiol 20(3): 238-248
Regan D (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York
Risetti M et al (2013) On ERPs detection in disorders of consciousness rehabilitation. Front Hum Neurosci 7: 775
Rowe FJ et al (2013) A prospective profile of visual field loss following stroke: prevalence, type, rehabilitation, and outcome. Biomed Res Int 2013: 719096
Royal Collage of Physicians. The permanent vegetative state (1996). Review by a working group convened by the Royal College of Physicians and endorsed by the Conference of Medical Royal Colleges and their faculties of the United Kingdom J R Coll Physicians Lond 30(2): 119-121
Sacco K et al (2011) A combined robotic and cognitive training for locomotor rehabilitation: evidences of cerebral functional reorganization in two chronic traumatic brain injured patients. Front Hum Neurosci 5: 146
Santos-Couto-Paz CC, Teixeira-Salmela LF, Tierra- Criollo CJ (2013) The addition of functional taskoriented mental practice to conventional physical therapy improves motor skills in daily functions after stroke. Braz J Phys Ther 17(6): 564-571
Schnakers C et al (2008a) Voluntary brain processing in disorders of consciousness. Neurology 71: 1614-1620
Schnakers C et al (2008b) Cognitive function in the locked-in syndrome. J Neurol 255(3): 323-330
Schnakers C et al (2009) Detecting consciousness in a total locked-in syndrome: an active event-related paradigm. Neurocase 4: 1-7
Sellers EW, Donchin E (2006) A P300-based braincomputer interface: initial tests by ALS patients. Clin Neurophysiol 117(3): 538-548
Sellers EW, Kubler A, Donchin E (2006) Brain-computer interface research at the University of South Florida Cognitive Psychophysiology Laboratory: the P300 Speller. IEEE Trans Neural Syst Rehabil Eng 14(2): 221-224
Sellers EW, Vaughan TM, Wolpaw JR (2010) A braincomputer interface for long-term independent home use. Amyotroph Lateral Scler 11(5): 449-455
Silvoni S et al (2009) P300-based brain-computer interface communication: evaluation and follow-up in amyotrophic lateral sclerosis. Front Neurosci 3: 60
Sorger B et al (2009) Another kind of 'BOLD Response': answering multiple-choice questions via online decoded single-trial brain signals. Prog Brain Res 177: 275-292
Stoll J et al (2013) Pupil responses allow communication in locked-in syndrome patients. Curr Biol 23(15): R647-R648
Teo WP, Chew E (2014) Is motor-imagery brain-computer interface feasible in stroke rehabilitation? A narrative review. PM R 6(8): 723-728
Vialatte FB et al (2010) Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol 90(4): 418-438
Whyte J et al (2013) Functional outcomes in traumatic disorders of consciousness: 5-year outcomes from the National Institute on Disability and Rehabilitation Research Traumatic Brain Injury Model Systems. Arch Phys Med Rehabil 94(10): 1855-1860
Wolpaw JR et al (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6): 767-791
Yoo SS et al (2004) Brain-computer interface using fMRI: spatial navigation by thoughts. Neuroreport 15(10): 1591-1595