No document available.
Abstract :
[en] Antarctica is essentially a microbial continent. A surprisingly large biodiversity of adapted microorganisms lives permanently in various biotopes of the ice-free areas (about 44,000 km2). Based on molecular methods and microscopic observations, important findings like the presence of potentially endemic taxa, their survival in glacial
refugia since the continent moved away from Australia and South America, and the determination of biogeographic patterns have been inferred. Moreover, Antarctic microorganisms may contain novel molecules with potentially pharmaceutical or biotechnological interest.
However, microbial habitats are under pressure as a result of nthropogenic introductions. Indeed, as a consequence of human presence, non-indigenous microorganisms are released from bodies, clothing, cargo and
food into the environment (Cowan et al. 2011). The increase of tourism and its diversification from coastal cruises
to adventurous expeditions into the continent, as well as the increase of research stations and associated impacts, constantly create new ‘entry points‘ for microbial contamination (Chown et al. 2012). The impacts of such introductions are still unknown, and might lead to a loss of the native microbial biodiversity, or its modification by lateral gene transfer.
The technical progresses in molecular methodologies, like we currently see with Next Generation Sequencing
(NGS), mean that very sensitive high-throughput analyses will become increasingly accessible. They have the
potential to describe the microbial communities with unprecedented details without preconceived expectations.
However, by that time, we might have lost the pristine Antarctic areas that would enable the scientists to study the native microbial flora, its functioning and properties.
The Protocol on Environmental Protection of the Antarctic Treaty foresees the designation of Antarctic Specially Protected Areas (ASPA) to protect “outstanding environmental, scientific, historic, aesthetic, or wilderness values, any combination of those values, or on-
going or planned scientific research”
(http://www.ats.aq/e/ep_protected.htm). However, the designation of ASPAs has not followed a systematic planning, and often focused on the conservation of large animals or higher plant communities. Microorganisms
have the handicap of generally being invisible without a microscope and relevant expertise, and needing molecular methods to determine their identity. Terrestrial habitats are protected in 55 out of the 72 existing ASPAs (in total less than 700 km2), mostly based on the need to protect vascular plants and bryophyte communities (Shaw et al. 2014). In 28 ASPAs, the protection targets the lichens, whereas microalgae are protected in 16 ASPAs, cyanobacteria in 7 and snow microalgae in 3. Only 8 ASPAs mention ‘Microbial habitats’, ‘microbial communities’ or ‘soil and lake microflora’.
One tool of the Protocol that could be specifically used to protect microbial habitats is the creation of inviolate areas where no visitation is permitted (inside ASPAs, for example). These zones could be set aside for future research (Hughes et al. 2013) and become extremely valuable. After a few decades, they would be unique
examples of truly pristine habitats, representative of the native microbial diversity and processes.
Such an option would necessitate discussions and consensus with scientists of other disciplines to select these regions, and careful management protocols of the sites and their vicinity (Hughes et al. 2015). In addition, gaps in knowledge should be addressed, like the extent of transportation of microorganisms by natural means (winds,
birds...) (e.g. Pearce et al. 2009), and the probability of subsequent colonization of new areas by microorganisms coming from other Antarctic regions or from outside Antarctica. Let’s hope that the dialogue between scientists and policy makers will enable to improve the conservation of Antarctic microbial diversity and safeguard the possibility to study these unique communities in the future with the most advanced techniques of the time. The outcome of these discussions might also be of interest for Arctic and alpine regions.