No document available.
Abstract :
[en] The Corinth rift is one of the fastest spreading rifts on Earth. In the western tip of the Rift, no major historical earthquake (Mw≥6) is known for the last 300 yrs, while the geodetic extension rate is the highest of the whole Corinth Rift. The question of seismic hazard is consequently particularly relevant. In this framework, we investigated the offshore sediments in order to look for sedimentary signature of past earthquakes. 12 short gravity cores have been retrieved in different environments: two shelves (40 and 100 m deep), one sub-basin (180 m deep) and the deep Gulf axis (330 m deep). The cores are 0.5 to 0.85 m long, permitting to analyze up to 400 yrs of sedimentation. Several sedimentological analyses have been performed: magnetic susceptibility, grain-size, XRF, ASM. Chronology is based on 137Cs and 210Pb decay. In parallel, an in-depth analysis of existing and newly found documents has been done to re-interpret macroseismic intensity fields of historical earthquakes and to build an updated earthquake catalogue for the area. These new data allowed us to estimate a macroseismic intensity threshold for submarine slope failures in the area, based on 16 reported events. Sedimentary events have been identified in all cores. On the first shelf, despite a visually homogenous, silty, sedimentation, 3 events have been highlighted by high resolution grain-size analysis and 210Pb decay profile’s disturbances. The upper one could be a back-wash flow tsunami deposit. On the second shelf, 4 high-concentration density flow deposits occurred with a recurrence time of ~58 yrs. In the canyon and in the sub-basin, sandy turbidites occurred with recurrence times of ~26 and ~56 years respectively. The possible seismic origin of these deposits is discussed based on their sedimentary characteristics and the macroseismic intensities assessed for the sediments source areas for each core location.