No document available.
Abstract :
[en] Introduction:
The relationship between biodiversity and ecosystem function remains a controversial subject with numerous open questions. In Europe, the conversion of coniferous monocultures into broadleaved or mixed stand is considered to face ecological and economical risks posed by coniferous monocultures. Belowground effects of such a change in the dominant tree species is however largely unknown, although bacteria regulate many soil processes and some groups, like ammonia oxidizing bacteria (AOB) are highly sensitive to environmental stress.
Objectives:
The aims of this study were to investigate (i) AOB community structure and richness under several tree species, (ii) microbial/environmental factors related to AOB diversity, (iii) the relationship between AOB diversity and the nitrification process.
Materials and methods:
Forest floor (Of, Oh) was sampled under European beech, sessile oak, Norway spruce and Douglas fir at three sites. AOB community structure and richness was assessed by PCR-DGGE and sequencing. Samples were analysed for net N mineralization, potential nitrification, basal respiration, microbial biomass, microbial or metabolic quotient, pH, total nitrogen, extractable ammonium, organic matter content and exchangeable cations.
Results:
AOB community structure and tree species effects on AOB diversity were site-specific. Factors regulating ammonium availability, i.e. net N mineralization or microbial biomass, were related to AOB community structure. AOB richness was not related to nitrification.
Conclusions:
Our research revealed that, at larger spatial scales, site specific characteristics may be more important that tree species in determining AOB richness and community structure. Within sites, tree species influence AOB diversity. The absence of a relation between AOB richness and nitrification points to a possibly role of AOB abundance, phenotypic plasticity or the implication of ammonia oxidizing archaea in this process.