van Someren, E.P., Wessels, L.F.A., Backer, E., and Reinders, M.J.T. (2002) Genetic network modeling. Pharmacogenomics, 3, 507-525.
Gardner, T.S. and Faith, J. (2005) Reverseengineering transcription control networks. Phys. Life Rev., 2, 65-88.
Chow, C. and Liu, C. (1968) Approximating discrete probability distributions with dependence trees. IEEE Trans. Inform. Theory, 14, 462-467.
Cheng, J., Greiner, R., Kelly, J., Bell, D., and Liu, W. (2002) Learning Bayesian networks from data: an informationtheory based approach. Artif. Intell., 137, 43-90.
Liang, K. and Wang, X. (2008) Gene regulatory network reconstruction using conditional mutual information. EURASIP J. Bioinform. Syst. Biol, 14.
Zhao, E., Serpedin, E., and Dougherty, E.R. (2008) Inferring connectivity of genetic regulatory networks using information-theoretic criteria. IEEE/ACM Trans. Computat. Biol. Bioinform., 5, 262-274.
Butte, A.J. and Kohane, I.S. (2000)Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput., 415-426.
Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J.J., and Gardner, T.S. (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol., 5, 8.
Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., and Califano, A. (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 7, S7.
Meyer, P.E., Kontos, K., Lafitte, F., and Bontempi, G. (2007) Informationtheoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinform. Syst. Biol. (Special Issue on Information-Theoretic Methods for Bioinformatics), 9.
Whittaker, J. (1990) Graphical Models in Applied Multivariate Statistics, John Wiley & Sons, Inc., New York.
Shannon, C.E. (1948) A mathematical theory of communication. Bell Syst. Tech. J., 379-423, 623-656.
Butte, A.J., Tamayo, P., Slonim, D., Golub, T.R., and Kohane, I.S. (2000) Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Natl. Acad. Sci. USA, 97, 12182-12186.
Sokolova, M., Japkowicz, N., and Szpakowicz, S. (2006) Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. AAAI Workshop on Evaluation Methods for Machine Learning, Boston, MA.
Meyer, P.E., Lafitte, F., and Bontempi, G. (2008) Minet: an open source R/Bioconductor package for mutual information based network inference. BMC Bioinformatics, 461.
Bhadra, S., Bhattacharyya, C., Chandra, N.R., and Mian, S. (2009) A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data. Algorithms Mol. Biol., 4, 5p.
Pearl, J. (2000) Causality: Models, Reasoning, and Inference, Cambridge University Press, Cambridge.
Spirtes, P., Glymour, C., and Scheines, R. (2001)Causation, Prediction, and Search, MIT Press, Cambridge, MA.
Meyer, P.E., Schretter, C., and Bontempi, G. (2008) Information-theoretic feature selection using variable complementarity. IEEE J Spec. Topics Signal Process, 2, 91-102.
Hwang, K., Lee, J.W., Chung, S., and Zhang, B. (2002) Construction of largescale Bayesian networks by local to global search. 7th Pacific Rim International Conference on Artificial Intelligence, Tokyo, Japan.
Tsamardinos, I., Aliferis, C., and Statnikov, A. (2003) Algorithms for large scale Markov blanket discovery. 16th International FLAIRS Conference, St. Augustine, Florida, USA.
Jakulin, A. and Bratko, I. (2003) Quantifying and visualizing attribute interactions. E-print arXiv:cs/0308002v1.
Jakulin, A. and Bratko, I. (2004) Testing the significance of attribute interactions. 21st International Conference on Machine Learning, Banff, Canada.
Anastassiou, D. (2007) Computational analysis of the synergy among multiple interacting genes. Mol. Syst. Biol., 3, 83.
Bromberg, F. and Margaritis, D. (2009) Improving the reliability of causal discovery from small data sets using argumentation. J. Mach. Learn. Res., 10, 301-340.
Olsen, C., Meyer, P.E., and Bontempi, G. (2009) On the impact of missing values on transcriptional regulatory network inference based on mutual information. EURASIP J. Bioinform. Syst. Biol., 308959.
Junker, B.H. and Schreiber, F. (2008) Analysis of Biological Networks, Wiley Series in Bioinformatics, Wiley- Interscience, New York.
Moret, B.M.E. and Shapiro, H.D. (1991) An empirical analysis of algorithms for constructing a minimum spanning tree. Lecture Notes Comput. Sci., 519, 400-411.
Cover, T.M. and Thomas, J.A. (1990) Elements of Information Theory, John Wiley & Sons, Inc., New York.
Peng, H., Long, F., and Ding, C. (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern. Anal., 27, 1226-1238.
Merz, P. and Freisleben, B. (2002) Greedy and local search heuristics for unconstrained binary quadratic programming. J. Heuristics, 8, 1381-1231.
Lopes, F.M., Martins, D.C., and Cesar, R.M. (2009) Comparative study of GRNS inference methods based on feature selection by mutual information. IEEE International Workshop on Genomic Signal Processing and Statistics, Minneapolis, MN, USA.
Shimamura, T., Imoto, S., Yamaguchi, R., Fujita, A., Nagasaki, M., and Miyano, S. (2009) Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Syst. Biol., 3, 41.
Meek, C. (1995) Strong completeness and faithfulness in Bayesian networks. 11th Conference on Uncertainty in Artificial Intelligence, Montreal.
Zhang, J. and Spirtes, P. (2008) Detection of unfaithfulness and robust causal inference. Minds Mach., 18, 239-271.
Zhang, X., Baral, C., and Kim, S. (2005) An algorithm to learn causal relations between genes from steady state data: simulation and its application to melanoma dataset. Artif. Intell. Med., 524-534.