No document available.
Abstract :
[en] Biosurfactants which are surface active molecules produced by micro-organisms present a wide structural diversity (glycolipids, lipoaminoacids, lipopeptides, polymers,...) and numerous advantages compared to their chemically synthesized counterparts.
Among glycolipids, rhamnolipids which are secondary metabolites produced mainly by strains of Pseudomonas aeruginosa, have drawn particular attention as they have several interesting biological properties such as antimicrobial, antiphytoviral, zoosporicidal and plant defense elicitor activities [1-3]. It is generally recognized that these activities must be linked to the interaction of these molecules with constituents of biological membranes [4] but the detailed mechanism is far from being fully understood.
In our laboratory, new rhamnolipids with various chain lengths and with or without a terminal carboxylic acid function were obtained via the development of a synthesis procedure consisting of two biocatalyzed steps involving naringinase and lipase [5].
The objective of this work was to investigate their interaction with model membranes in relation with their structure in order to give insight about the mechanism of their biological action. A range of complementary experimental and modelling methods was used to analyze their interaction with membrane models. Results reveal differential interaction with lipids according to the structure of the rhamnolipid. The nature of the lipid is also a key parameter for the ınteractions.