No full text
Paper published in a book (Scientific congresses and symposiums)
Prediction of non-linear time-variant dynamic crop model using bayesian methods
Mansouri, Majdi; Dumont, Benjamin; Destain, Marie-France
2013In John Stafford (Ed.) Precision agriculture '13
Peer reviewed
 

Files


Full Text
No document available.

Send to



Details



Keywords :
Crop model; Variational filter; Extended Kalman filter; Particle filter; LAI; Soil moisture
Abstract :
[en] This work addresses the problem of predicting a non-linear time-variant leaf area index and soil moisture model (LSM) using state estimation. These techniques include the extended Kalman filter (EKF), particle filter (PF) and the more recently developed technique, variational filter (VF). In the comparative study, the state variables (the leaf-area index LAI, the volumetric water content of the layer 1, HUR1 and the volumetric water content of the layer 2, HUR2) are estimated from noisy measurements of these variables, and the various estimation techniques are compared by computing the estimation root mean square error with respect to the noise-free data. The results show that VF provides a significant improvement over EKF and PF.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Mansouri, Majdi ;  Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Dumont, Benjamin  ;  Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Destain, Marie-France ;  Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Language :
English
Title :
Prediction of non-linear time-variant dynamic crop model using bayesian methods
Publication date :
July 2013
Event name :
9th European Conference on Precision Agriculture (ECPA)
Event organizer :
ICPA
Event place :
Lleida, Spain
Event date :
7-11 July 2013
Audience :
International
Main work title :
Precision agriculture '13
Editor :
John Stafford
Publisher :
Wageningen Academic Publishers, Netherlands
ISBN/EAN :
978-90-8686-224-5
Pages :
507-513
Peer reviewed :
Peer reviewed
Funders :
ULiège - Université de Liège
Available on ORBi :
since 05 September 2013

Statistics


Number of views
74 (8 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
1

Bibliography


Similar publications



Contact ORBi