Continuation; Invariant manifolds; Nonlinear normal modes; Local parameterization
Abstract :
[en] In mechanical engineering, performance enhancement usually results in lighter and more flexible structures and pushes the limits of the system operating envelope. Nonlinearity is therefore becoming a frequent occurrence and linear design tools show their limitations. To overcome these issues, nonlinear normal modes (NNMs) were introduced in structural dynamics as a direct extension of linear normal modes to nonlinear systems. Our contribution reviews the history and the new trends for the computation of NNMs in mechanical engineering.
Specifically, algorithms for the continuation of periodic solutions were first developed. Such algorithms are now well-established and applicable to large-scale systems such as real-life aerospace structures. To further extend the concept of NNMs to nonconservative systems, the definition of an NNM as an invariant manifold in the system’s phase space was introduced. Again, continuation techniques are particularly well suited for computing these invariant manifolds. The geodesic level set method developed by Krauskopf and Osinga [1] as well as the “PDE formulation” method of Guckenheimer and Vladimirsky [2] are both considered.
[1] Krauskopf, B. and H. Osinga (2003). "Computing Geodesic Level Sets on Global (Un)stable Manifolds of Vector Fields." SIAM Journal on Applied Dynamical Systems 2(4): 546-569.
[2] Guckenheimer, J. and A. Vladimirsky (2004). "A Fast Method for Approximating Invariant Manifolds." SIAM Journal on Applied Dynamical Systems 3(3): 232-260.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Renson, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Kerschen, Gaëtan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Language :
English
Title :
Computation of nonlinear normal modes through continuation methods
Publication date :
May 2013
Event name :
International School and Workshop on Advanced Computational and Experimental Techniques in Nonlinear Dynamics
Event date :
May 2013
Audience :
International
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.