No document available.
Abstract :
[en] The loss of pancreatic insulin-producing cells (beta-cells) is a hallmark of diabetes and more knowledge is needed to find new treatments. Thus, it is crucial to identify novel regulatory genes specifically expressed in this pancreatic cell subtype. In the present study, the main pancreatic islet was dissected from transgenic Tg(insulin:GFP) adult zebrafish and beta-cells were selectively recovered by FACS with 98% of purity. Illumina RNA-seq was used to sequence the transcriptome. 20 millions of sequenced reads (paired-end) were obtained, aligned on the zebrafish genome and assembled into transcripts (Tophat/Cufflinks softwares). The zebrafish beta-cells transcriptome includes all known regulatory genes involved in beta-cell differentiation such as pdx1, mnx1, pax6b, neuroD, isl1, insm1, as well as Hopx and Hdac9 genes, both recently identified in human beta-cells. In contrast, the alpha-cell specific transcription factor arx and the acinar marker ptf1a were not detected, confirming the high purity of our beta-cell preparation. Interestingly, many miRNAs were detected, such as dre-mir-375 and dre-mir-7, as well as several lncRNA recently described at embryonic stages. We are currently applying the same approach to the Tg(somatostatin:GFP) and Tg(glucagon:GFP) transgenic lines in to characterize the transcriptome of delta- and alpha-cells. The comparison of these different data will allow us to identify coding and non-coding genes specifically expressed in the different endocrine subtype cells, paving the way for further functional studies.