No full text
Eprint already available on another site (E-prints, working papers and research blog)
The Generalized Variational Metric
Alexandre, Patrick; Tossings, Patricia
1996
 

Files


Full Text
No document available.

Send to



Details



Keywords :
Linear, continuous, self-adjoint positive definite transformation H; Norm generated by H; H-maximal monotone operator; Generalized resolvent operator; Generalized variational convergence
Abstract :
[en] The variational convergence theory has known these last years a lot of developments. This theory is fundamental to give a global approach of problems which consist in searching a zero of a maximal monotone operator on a real Hilbert space. The notion of perturbation is often used in the resolution of such problems. More and more authors work also with a special or a variable metric on the space to solve this kind of problems. In the present paper, we give a unified context to couple these two approaches: a variational metric between operators, taking into account different metrics on the space.
Disciplines :
Mathematics
Author, co-author :
Alexandre, Patrick
Tossings, Patricia ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mathématiques générales
Language :
English
Title :
The Generalized Variational Metric
Publication date :
April 1996
Publisher :
Faculté d'Economie, de Gestion et de Sciences Sociales de l'Université de Liège, Liège, Belgium
Number of pages :
15
Source :
Available on ORBi :
since 10 April 2013

Statistics


Number of views
87 (1 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi